
 
 
 
 
University of Oxford 
Software Engineering Programme 
 
 
 
MSc in Software Engineering 
Dissertation Submission 
 
 
 
Maturing the Software Logistics 
Support Analysis Process 
 
 
 
Jamie Francis Brooks 
Kellogg College 
March 2005 
 
 
 
 
 
 
 
 
 
 
 



 

ABSTRACT 
 
Within the domain of software engineering, capability sustainment equates to the ability to 
continually implement and field modifications within required timescales on an affordable 
basis.  However the unique nature of software means that support analysis cannot be 
performed using traditional hardware oriented Logistic Support Analysis (LSA) techniques.  
Software LSA guidance provided within Defence Standard 00-60 is inappropriate and 
incomplete, which has lead to software related supportability decisions becoming ill-
informed, unjustified and untraceable.  As a result of this, the MOD has increased its 
exposure to contractor exploitation during system support activities. 
 
This project, based on a case study of LSA applied to the Royal Air Force’s Future 
Offensive Air System project, identifies significant inadequacies in the guidance covering 
the application of LSA to software and suggests more appropriate approaches and 
techniques for the purpose of maturing the software LSA process, improving capability 
sustainment, and reducing the through life cost of support. 
 
 
 
 
 
 
 
ACKNOWLEDGEMENTS 
 
Throughout the completion of this dissertation assistance has been gratefully received 
from family, friends and colleagues.  I would especially like to thank: 
 

My project supervisors, Dr Jeremy Gibbons and Dr Andrew Martin, for their 
guidance. 

 
Mark Bailey, Ian Grose and Lee Cooper, for their challenges, contribution and 
constructive criticism. 

 
David Gill, for his continued motivation and encouragement. 

 
My devoted wife, for her unconditional sacrifice, tolerance and support. 

 
The author confirms that this dissertation does not contain material previously submitted 
for another degree or academic award and is the author’s own work except where 
otherwise stated. 
 
 
 
 
 
 
 
Opinions expressed within this dissertation are solely attributable to the author and 
do not necessarily represent MOD doctrine or policy. 

i 



 

CONTENTS 
 
SECTION 1..........................................................................................................................1 

INTRODUCTION..............................................................................................................1 
1.1 Motivation ..............................................................................................................1 
1.2 Contribution ...........................................................................................................1 
1.3 Realisation.............................................................................................................2 

APPLICATION AREA.......................................................................................................4 
1.4 The Nature of Maintenance ...................................................................................4 
1.5 Software Support Infrastructure.............................................................................5 
1.6 Types and Benefit of Software Modification ..........................................................6 

SUMMARY.....................................................................................................................10 
SECTION 2........................................................................................................................11 

LSA PLANNING AND IMPLEMENTATION....................................................................11 
2.1 The Application of Defence Standards and Publications.....................................11 
2.2 LSA Scope and Responsibility ............................................................................12 
2.3 Approach and Implementation.............................................................................17 
SUMMARY .................................................................................................................21 

SECTION 3........................................................................................................................23 
SUPPORTABILITY REQUIREMENTS...........................................................................23 

3.1 The Totality of Support ........................................................................................23 
3.2 Supportability Requirements Engineering ...........................................................29 
3.3 Performance Support Requirements ...................................................................30 
3.4 Functional Support Requirements .......................................................................31 
SUMMARY .................................................................................................................32 

SECTION 4........................................................................................................................33 
SUPPORTABILITY ACHIEVEMENT AND SUSTAINMENT...........................................33 

4.1 Transposition of Analysis Techniques .................................................................33 
4.2 Risk Based Approach to Software Support .........................................................35 
4.3 Non-Economic LOSA ..........................................................................................37 
4.4 Supportability and Technology ............................................................................39 
4.5 Supportability Preservation..................................................................................41 
SUMMARY .................................................................................................................42 

SECTION 5........................................................................................................................45 
SUPPORTABILITY VALIDATION AND VERIFICATION................................................45 

5.1 Supportability Achievement Through Progressive Assurance .............................45 
5.2 Test And Evaluation Strategy ..............................................................................46 
5.3 Supportability Assessment and Management Techniques..................................47 
5.4 Supportability Assessment Objectives And Criteria.............................................49 
5.5 Supportability Intent Verification ..........................................................................51 
5.6 Product Assessment ...........................................................................................52 
5.7 Process Assessment ...........................................................................................53 

SUMMARY.....................................................................................................................54 
SECTION 6........................................................................................................................56 

DISCUSSION.................................................................................................................56 
6.1 Reflection ............................................................................................................56 
6.2 Critique ................................................................................................................57 
6.3 Future Work.........................................................................................................59 

 
 

ii 



 

TABLES 
 

Table 1 – Def Stan 00-60 Defined LSA Task Responsibility.......................................15 
Table 2 – MOD Related Factors .................................................................................16 
Table 3 – Service Supplier Related Factors ...............................................................17 
Table 4 – Supportability Performance Requirements .................................................31 
Table 5 – Support Risk Assignment............................................................................36 
Table 6 – Support Risk Definition ...............................................................................36 
Table 7 – OFP Qualitative Support Option Selection..................................................39 
Table 8 – Potential Benefits of Software Technology .................................................41 
Table 9 – Method Strengths and Weaknesses ...........................................................48 
Table 10 – Metric Attributes........................................................................................51 

 
FIGURES 
 

Figure 1 – Dissertation Overview..................................................................................3 
Figure 2 – Hardware Maintenance Lifecycle.................................................................5 
Figure 3 – Relative Distribution of Effort Across the Lifecycle ......................................6 
Figure 4 – Causes of Software Change........................................................................8 
Figure 5 – Maintenance Cost and Benefit.....................................................................9 
Figure 6 – The Software Maintenance Life Cycle .......................................................23 
Figure 7 – Def Stan 00-60 Generic Model of Software Support..................................25 
Figure 8 – Initial Support System Model .....................................................................25 
Figure 9 – Support System Model ..............................................................................27 

 
APPENDICES 
 

A. Bibliography. 
B. Analysis of RAF Change Drivers. 
C. Support Activity Inventory. 
D. Qualitative Support Option Assessment. 
E. Supportability Characteristics. 
F. Technology Demonstrator Programme Summary. 
G. Supportability Related Technologies. 
H. Technology Supportability Benefit. 
I. Capability Maturity Model Common Features. 
J. Transposition of Testing Into the Supportability Domain. 

 
 

iii 



 

SECTION 1 
 
INTRODUCTION 
 
1.1 MOTIVATION 
 
Within the Avionic Support Group (AvSG), Assistant Directorate Systems, RAF Wyton, 
work1 has been carried out to update guidance provided on the application of Logistics 
Support Analysis (LSA) to software.  This work, primarily an evaluation of Defence 
Standard (Def Stan) 00-60 within the context of the Acquisition Management System 
(AMS), established new guidance on Concept Phase software LSA and a framework to 
assist with the planning, implementation and management of LSA tasks. 
 
Accepted within this body of work is the need to establish guidance that will: reach beyond 
the Concept Phase, assist with the identification of software supportability User 
Requirements and aid the creation of Software Support Policy Statements.  In addition to 
these stated needs, I believe that the guidance itself needs to be validated as the work is 
mainly based on a desktop review of LSA related standards and literature. 
 
For the past two years I have been involved in the application of LSA to software for the 
Future Offensive Air System (FOAS).  It is intended that FOAS will replace the defence 
ground attack capability currently provided by Tornado GR4.  However, unlike the GR4, 
FOAS is not perceived as an aircraft replacement, instead it is due to be a ‘System of 
Systems’.  The ‘System of Systems’ approach is capability focused and as such, FOAS 
could comprise of a manned aircraft, Un-inhabited Combat Air Vehicle (UCAV), 
Conventionally Armed Long-Range Cruise Missile (CALCM), and a Non-Penetrating 
Aircraft (NPA) - which will act as a CALCM and UCAV delivery platform.  This work, 
innovative in its field, has produced a number of reports that have attempted to document 
software LSA outputs.  Unfortunately, as with any immature discipline, the work has fault 
and many opportunities exist to improve the quality of both the LSA process and its 
products. 
 
1.2 CONTRIBUTION 
 
This dissertation presents a case study with the aim of maturing the LSA process by: 
 

• Stating the current failings of Def Stan 00-60, both general and software 
related. 

 
• Defining the nature of software supportability analysis and transposition of 

LSA into the software domain. 
 

• Assessing the practicalities of LSA scope and depth when analysis is carried 
out by an organisation external to a Project Team. 

 
• Evaluating existing guidance on LSA for software and suggesting areas for 

improvement. 
 

• Suggesting new analysis methods that reach beyond the scope of existing 
LSA guidance. 

1 



 

The dissertation successfully highlights the fundamental issues that govern the need for 
software support in modern military systems and drive the software Logistic Support 
Analysis (LSA) process.  It identifies some of the common causes of support analysis 
failure, which has been achieved through an examination of MOD guidance material on 
the application of LSA to software and a review of the support analysis carried out for the 
FOAS project. 
 
The totality of software support from an operational perspective has been identified, and 
awareness of support requirements that are typically implied rather than stated has been 
achieved.  A generic Support System Model has been created and is considered to be a 
key element of this dissertation, as this model has been utilised throughout further LSA to 
assist with the production of consistent, complete and correct outputs. 
 
LSA guidance and techniques have been transposed into the software domain to bridge 
some of the voids and misunderstandings that exist in this area.  An informed, justifiable 
and traceable method, by which critical software items can be identified and their support 
requirements understood, has been developed. 
 
The need to progressively assure the achievement of desired system supportability 
characteristics has been recognised.  Guidance has been formulated on the early and 
beneficial application of LSA Task 501, which aims to ensure that software enabled 
capability can be sustained throughout the life of a project. 
 
1.3 REALISATION 
 
This dissertation comprises of six sections, covering a broad range of interdependent 
topics, the relationship between these sections is illustrated in Figure 1. 
 
Much of the dissertation has been directly enabled by principles taught during the course, 
examples of which include: 
 

• Object Orientation (OOR) – although on the fringe of this subject, support 
system model refinement was improved by an understanding of the role of 
modelling and need for consistency. 

 
• Requirements Engineering (REN) – with the definition of supportability 

performance and functional requirements. 
 

• Managing Risk and Quality in Software (MRQ) – the transposition of Level of 
Repair Analysis needs to address support criticality in a manner that is 
informed, justified and traceable. 

 
• Software Testing (STE) – to gain confidence that supportability is being 

addressed, progressive assurance of software supportability needs to be 
established.  A transposition of software testing into the supportability 
domain will assist with the achievement of this activity. 

 
• Safety Critical Systems (SCS) – as with safety, supportability is an emergent 

system property, as such safety management techniques can be utilised 
within the supportability-engineering domain. 

2 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Section 4 Overview
 

 

sposition of analysis techniques into 
    the software domain. 
•  Creation of an informed, justifiable and 
    traceable method, by which critical 
    software items can be identified and their 
    support requirements understood. 
•  Technology supportability benefit 
    assessment. 

 
•  Tran 

 
 
 
 
 
 Section 4 Outputs
 

 
 
•  Analysis techniques that are appropriate 
    for software supportability analysis. 
•  Risk based approach to support analysis. 
•  Qualitative support option selection 
    process. 
•  Product and process supportability 
    characteristics. 
•  Preliminary assessment of supportability 
    related technologies. 

Section 1 Overview 
 
•  Context definition. 

Section 1 Outputs 
 
•  Improved understanding of the problem 
    domain. 
•  Categorization of change types. 
•  Relative spread of software changes. 

Section 2 Overview 
 
•  LSA problem identification. 
•  Improvement analysis. 

 

Section 2 Outputs 
 
•  Approaches on the completion of LSA for 
    software. 
•  Set of high level improvement suggestions 
    covering the general application of LSA to 
    software. 

Approaches on the 
completion of LSA 

for software 

Relative spread of 
categorized 

software changes 

Support 
System 
Model 

Support 
System 
Model 

Understanding  
of the problem 

domain 

Section 3 Overview 
 
•  Develop understanding of the totality of 
    software support. 
•  Framework creation to assist with the 
    formulation of support requirements. 

 

Section 3 Outputs 
 
•  Software Support Model. 
•  Generic software support performance  
    requirements. 
•  Generic software support functional 
    requirements. 

Understanding  
of the problem 

domain 

 
 
 
 
 
 
 

Section 5 Overview 
 
•  Recognition of the need to progressively 
    assure the achievement of desired 
    system supportability characteristics. 
•  Transposition of testing into the 
    supportability domain. 

Section 5 Outputs 
 
•  Guidance covering the early and 
    beneficial implementation of supportability 
    test, evaluation and verification. 

 
Product and process 

supportability characteristics. 

Section 6 Outputs 
 
•  Critical analysis of the dissertation’s 
   approach and outputs. 

Section 6 Overview 
 
•  Dissertation discussion. 

 
 
 
 
 
 
 
 
 
 
 
 
         Key: 

 
Arrows represent 
usage of an 
output from 
another section 

 
 
 
 
 

Figure 1 – Dissertation Overview 

3 



 

APPLICATION AREA 
 
1.4 THE NATURE OF MAINTENANCE 
 
Maintenance of hardware is initiated by random, systematic or predicted failure.  These 
initiators can be defined as follows: 
 

• Random failure is the expected but singularly unpredictable wear out of a 
physical item. 

 
• Systematic failure is the failure of an item that is attributable to a definable 

and repeatable set of conditions (typically caused by design errors or system 
operation outside of specified limits). 

 
• Predicted failure is an estimation technique utilising the fact that failures of a 

group of items can be estimated to fall within a predicted range of values. 
 
In the field of hardware engineering random failures are dominant and drive maintenance 
activities.  Therefore, historically, system maintenance activities and policies have been 
based on the management of random hardware failures. 
 
Over the last 20 years a fundamental change has occurred in systems development.  
System functions are increasingly being enabled by software operating on computer based 
systems.  These software intensive systems have given developers the opportunity to 
provide highly versatile systems that are easily changed to match new evolving 
technologies and operational requirements. 
 
The concept that software can be changed with ease to match new technology and 
operational requirements is now under challenge.  The challenge has come from the 
increased complexity that software intensive systems are exhibiting and limited investment 
in system supportability engineering.  Efforts to manage the efficiency and effectiveness of 
software support have had mixed success for these same reasons. 
 
Unlike hardware, software only fails systematically; that is to say that it does not wear out 
like hardware.  Failures of a system, attributable to software, are caused by faults that 
have not been removed prior to delivery, operation of the system outside of its specified 
limits, or the introduction of faults through subsequent maintenance.  The life of software 
within an operational system is different to that of hardware.  Unlike hardware, that at 
some point in time can have a completely serviceable state, all but the most elementary 
software contains faults to some extent throughout its life. 
 
For hardware, a difference can be defined between the maintenance and modification of 
an item.  Hardware maintenance will return an item to its original supplied state (see 
Figure 2) whilst modification will alter the specification or function of an item.  Software 
maintenance does not return a software item back to its original supplied state.  Software 
maintenance requires changes or modifications to the product, even to correct faults.  
Therefore, in essence, there is little difference between software maintenance and 
modification processes and activities.  As such, software maintenance activities can be 
referred to as modifications or changes. 
 

4 



 

 
Available For 
Operational 

Use 

 
In Operational 

Use 

 
Failure Caused 
By Component 

Wear Out 

 
Removed From 

Operational 
System 

 
Repaired Or 

Replaced 

Start. 

 
Fitted To 

Operational 
System 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Hardware Maintenance Lifecycle 
 
1.5 SOFTWARE SUPPORT INFRASTRUCTURE 
 
Whilst the engineering resources needed for software development and software 
modification are similar, differences do exist in the scale of infrastructure requirements 
between acquisition and support.  Acquisition takes place in an industrial context, while 
support is conducted in an operational context.  Industry based software development has 
an infrastructure tailored to larger scaled projects with longer schedules, work that has 
greater resource needs than that of smaller projects.  In-Service software modification has 
an infrastructure tailored to smaller scaled projects with shorter schedules, work that often 
requires greater responsiveness than that of larger projects.  At present, this greater 
responsiveness is typically enabled in the Royal Air Force (RAF) by the utilisation of 
dedicated Software Support Teams (SST) working closely with the Users. 
 
According to Takang and Grubb2, the distribution of effort across the lifecycle differs 
between software development and software modification, as shown in Figure 3.  It should 
be noted that the traces in Figure 3 are not provided for the purpose of a direct effort 
comparison between development and modification (i.e. the figure does not indicate that 
more effort is spent on requirements during modification than development).  Instead the 
figure enables a comparison of relative effort distribution for either development or 
modification, (i.e. during software modification a larger proportion of effort is consumed 
during requirements than implementation, where as this is not he case during 
development). 
 
Software support activities have a different focus than those in development, they include3: 
 

• Interacting with users to determine what changes or corrections are needed. 
 

• Reading existing code to understand how it works. 
 

• Changing existing code to make it perform differently. 
 

• Testing the code to make sure it performs both old and new functions 
correctly – for safety related software modification this also includes re-
qualification and certification. 

 

5 



 

• Delivering the new version with sufficiently revised documentation to support 
the user and product. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Software Modification 

Software Development 

Relative 
Effort 

Requirements Specification Design Implementation Testing Operation 

 
Figure 3 – Relative Distribution of Effort Across the Lifecycle 

 
With reference to Lehman4, military systems are embedded in a real-world situation that is 
constantly changing.  As these systems are designed to complete functions within the real 
world they are therefore subject to a constant flow of possible change triggers.  From this 
observation it can be concluded that the idea that a program can be developed and 
finished, without further maintenance, is false.  Change is inevitable and in fact desirable 
to protect the software investment, prevent obsolescence and reduce the risk of capability 
gap.  Now that software dominates most new systems as the function provider, the 
maintenance provision for computer-based systems must recognise the initiators of 
software modification. 
 
1.6 TYPES AND BENEFIT OF SOFTWARE MODIFICATION 
 
According to Musa and Everett5 the discipline of software reliability engineering exists to 
maximise customer and user satisfaction by providing and sustaining system availability. 
 

“Software engineering is about to reach a new stage – the reliability stage – that 
stresses customers’ operational needs.”  

 
Musa and Everett suggest that the two activities that specifically enable this customer 
focus are the establishment of a failure intensity and operational profile, which are 
summarised as follows: 
 

• Failure intensity is an indication of system reliability determined by 
measuring the number of failures experienced for a given period of program 
execution time. 

 
• The operational profile documents the set of functions that a system can 

perform along with probabilities of their execution.  The profile is established 

6 



 

so that derived system reliability will relate directly and accurately to the 
operational environment. 

 
Like reliability engineering, supportability engineering also aims to maximise customer and 
user satisfaction by providing and sustaining system availability.  As such, benefit should 
be gained by transposing this work into the supportability domain.  To do this we need to 
identify how this work remains relevant when considering system maintenance rather than 
failure.  It is evident from the summaries above that the main strength of Musa and 
Everett’s work is the way that it focuses on operational use so, with this in mind, we need 
to ensure that our support analysis considers operational maintenance drivers.  As such, 
rather than thinking about potential sources of failure and how often they might be 
experienced, we need to understand potential sources of change and how often might they 
be encountered. 
 
Within the RAF6, differing classifications of software modification have been defined, as 
follows: 
 

Corrective. 
 

“A corrective change modifies a software item to remove a software fault.” 
 

Corrective changes remove faults that are present in delivered software products, 
causing system operation to deviate from requirements (systematic failure). 

 
Adaptive. 

 
“An adaptive change modifies a software item to enable it to continue to meet its 
specification in a changed environment.” 

 
Adaptive changes typically preserve system functionality when interfacing system 
components are changed and no longer operate as originally specified. 

 
Perfective. 

 
“A perfective change modifies a software item to enable it to meet its existing 
specification in an improved fashion.” 

 
Perfective changes can remove unwanted functionality or re-implement existing 
requirements to improve inefficient or ineffective items. 

 
Enhancements. 

 
“An enhancement change modifies a software item to add additional functionality to 
the system.” 

 
An enhancement change is driven by a change to the system requirements.  If 
function change is defined as the addition and removal of functions then 
enhancements also include modifications that change functionality. 

 

7 



 

Whist these definitions are useful, they are of no analysis value unless we can gain an 
understanding of how these sources of change influence our systems.  Investigation by 
Lientz and Swanson7 into the spread of software change types has existed for some time, 
as illustrated in Figure 4.  As a rule of thumb, functionality improvements and 
enhancements for users drive 50% of software change (perfective and enhancement 
changes), while maintaining system functionality accounts for the other 50% (corrective 
and adaptive changes). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. 

B. 

C. 

 
D. 

E. 

F. 

G. 

 
H. 

Corrective 
20%

Adaptive 
25%

Enhancement 
40% 

Perfective 
15% 

A.  Emergency Program Fixes (12%) 

B.  Routine Debugging (10%) 

C.  Program Interface Changes (19%) 

D.  Hardware Changes (5%) 

Change Driver: 

E.  User Enhancements (41%) 

F.  Documentation Improvement (5%) 

G.  Code Efficiency Improvement (5%) 

H.  Other (3%) 

 
Figure 4 – Causes of Software Change 

 
This work is based on analysis of changes experienced by commercial systems in the late 
1970’s; as such we have to question its suitability for today’s use in a military domain.  My 
support for its use is based on the following reasons: 
 

• A second set of analyses produced by Nosek and Palvia8, which considered 
a slightly different categorization of change initiators, supported Lientz and 
Swanson’s initial findings. 

 
• Even if the spread of change types is slightly incorrect, it is important to 

realise that software maintenance is not just corrective. 
 
To bring this work into a military context and provide extra confidence in its applicability, I 
have carried out a preliminary analysis of RAF in-service software support teams.  In this 
analysis I reviewed 249 software modifications using Lientz and Swanson’s original 
categorization of change types.  This analysis, included at Appendix B, also supports 
Lientz and Swanson’s findings.  It has not however been published, the reason for this 
being that the underlying data set is not considered robust enough to withstand rigorous 
scrutiny.  This situation is not desirable as it results in a poor understanding of why we 
change our systems, this in turn hampers efforts to predict how our systems might change 
in the future and what level of support we might require.  During presentations of my work 

8 



 

at supportability forums, I have experienced numerous challenges regarding the use of 
Lientz and Swanson’s work, all of which have been countered when the aforementioned 
rationale is provided.  However, this situation could be avoided if data from an in-depth 
analysis of military change drivers was readily available. 
 
Considering software change from the viewpoint of its ability to enhance or maintain 
system functionality gives only one perspective on this issue, a second perspective can be 
taken by considering the degree to which an organisation is free to decide which changes 
it implements.  With this in mind, Boehm9 has shown that just under 50% of the available 
software maintenance budget is consumed carrying out mandatory corrective and adaptive 
changes; change that is forced on the system.  The remaining budget is then allocated to 
changes that offer the organisation most benefit.  It is therefore desirable to minimise the 
cost of mandatory changes, such that a greater proportion of budget can be invested in 
high benefit change.  This is illustrated in Figure 5. 
 
 Investment 

Segment 
High Pay-off 

Segment 
Diminishing 

Returns 

50% 100% 

Percentage of Available Software Maintenance Budget 

C
um

ul
at

iv
e 

Be
ne

fit
 to

 O
rg

an
is

at
io

n 

Emergency Program Fixes 

Mandatory Enhancements  
Adaptive Changes 

User Enhancements 

Routine Debugging 

Perfective Changes 

Tertiary User Enhancements 

Secondary Performance Improvements 

Secondary User Enhancements 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Maintenance Cost and Benefit 
 
With limited resources and a desire to field products* in a timely manner, a need has been 
established for effective and efficient software maintenance.  These characteristics are in 
effect maintenance quality goals; as such they should be used to drive all software 
development and support processes†.  The Society of Automotive Engineers (SAE)10 
defines the requirements of software supportability as follows: 
 
 
                                                 
* The term ‘product’ is used to describe any output created during software development or maintenance. 
† The term ‘process’ is used to describe any set of activities and activity enablers that transform inputs into 
   outputs (or products). 

9 



 

 
“General – There are two aspects to meeting a customer’s software supportability 
requirements.  The first is ensuring the delivery of a product with the appropriate 
design characteristics to facilitate the expected demand for through-life change and 
enhancement.  The second aspect is the provision of a support capability that 
satisfies the customer’s quality of service needs at an acceptable cost.  These are 
interrelated goals that should be addressed through a coordinated approach to 
software supportability planning.” 

 
The achievement of our maintenance goals is therefore vested in the provision and 
preservation of appropriate software product and process characteristics.  Within the MOD 
the vehicle used to procure supportability characteristics is Def Stan 00-60 (Application of 
Integrated Logistic Support)11, particularly Part 3, which gives guidance on the application 
of the standard to software.  No single Def Stan governs or provides guidance on the 
preservation of supportability characteristics, instead this function is provided by the 
various bodies that manage software change. 
 
SUMMARY 
 
This section has endeavoured to highlight the fundamental issues that govern the need for 
software support in modern military systems and drive the software Logistic Support 
Analysis (LSA) process. 
 
The unique nature of software means that it cannot be analysed using traditional hardware 
LSA techniques, nor treated as an adjunct to any system.  Software can now be 
considered the main function provider for many systems and as such has also become the 
major capability provider. 
 
The belief that system requirements can be defined and frozen prior to a system’s 
development, or indeed during its operational life, is ill-founded.  Threats and counter 
tactics are constantly evolving; placing ever-increasing demands on our systems.  As 
such, these systems need to be capable of supporting new requirements, a task primarily 
vested in an ability to modify software.  This ability will therefore directly affect an 
organisation’s potential to sustain capability and protect investment. 
 
Software modification can be grouped into two main areas, those that maintain existing 
functionality and others that enhance functionality.  Enhancements offer the highest benefit 
to an organisation as they improve capability.  The ability to implement enhancements is 
constrained by the unavoidable limitation created by resource availability and the need to 
maintain existing functionality.  Given the limited availability of resources and a desire to 
maintain capability, a need has been identified to make the software support process as 
effective and efficient as possible. 
 
Having introduced the need for software LSA, the next section will discuss the 
appropriateness and failings of guidance material provided by the MOD and make 
improvement suggestion where possible. 

10 



 

SECTION 2 
 
LSA PLANNING AND IMPLEMENTATION 
 
2.1 THE APPLICATION OF DEFENCE STANDARDS AND PUBLICATIONS 
 
Before LSA practitioners can determine support solutions they need to understand the 
support need.  Prior to the advancement of AP100D-10 from version 2 (Management 
Policy for Operational systems) to version 3 (Support for Mission Software in RAF 
Systems), software support analysis was carried out to assist with the production of a 
Software Support Policy Paper (SSPP).  This paper captured the support needs based on 
the characteristics of a supplied software product.  Based on this information, a filtering 
process would be carried out to identify the most appropriate support solution.  Further 
analysis would then be undertaken to identify the infrastructure and personnel 
requirements of the chosen support option, this information would then be captured in the 
Software Support Policy Statement (SSPS). 
 
When AP100D-1012, version 3 arrived, LSA and the Logistics Support Analysis Record 
(LSAR) replaced SSPPs.  The LSAR brought many advantages to the analysis process by 
providing a framework and a means of standardising the arduous task of capturing support 
resource requirements.  Unfortunately the LSAR, which was originally established to 
capture data relating to hardware, struggled to assist with the recording of software related 
analysis outputs.  In effect LSA and the LSAR had arrived but the means of recording 
support analysis was inadequate, traceability was lost and support decisions became ill-
informed, and unjustified. 
 
Historically, support analysis has been carried out by the MOD then, driven by the need to 
reduce MOD costs and a change in doctrine that focused on front line operations; a 
paradigm shift occurred that resulted in the majority of LSA being contracted to industry.  I 
now suggest that the MOD should undertake an amount of software LSA itself, or risk 
erosion the intelligent customer capability and loss of the ability to robustly contract for, or 
effectively manage, LSA.  Should our intelligent customer capability be lost, the MOD will 
place itself in a position of vulnerability through exploitation, in essence we will no longer 
understand the software LSA process and the Integrated Logistics Support discipline could 
fail.  With the necessary understanding, contracting for software LSA is a legitimate means 
of reducing costs and personnel overheads.  However, we need to understand what it is 
we are contracting for and retain the ability to oversee and manage LSA activities. 
 
In accordance with the guidance given in Def Stan 00–6013 and AP 100C–70 (Integrated 
Logistic Support In The Royal Air Force )14, the assessment of alternative support systems 
is carried out with reference to data populated in the LSAR.  However, by waiting for 
system design to become suitably mature to facilitate Reliability and Maintainability (R&M) 
engineering, Failure Modes Effect and Criticality Analysis (FMECA), Level of Repair 
Analysis (LORA) and subsequent population of the LSAR, the best opportunity to influence 
system design for support has been lost. 
 
The ability to influence product design and support planning is only possible if analysis is 
carried out in a timely manner.  Unfortunately, the application of Software Support Analysis 
(SSA), as described in Def Stan 00-6015, is reactive, i.e. once a solution has been 
identified and its design mature.  This means that the rigid application of Def Stan 00-60 

11 



 

early in the CADMID‡ acquisition lifecycle is inappropriate.  To accommodate this situation 
and carry out proactive SSA, the spirit of Def Stan 00-60 needs to be considered at a level 
that enables supportability design factors to be established at a time when they can be 
used to influence product and process design. 
 
2.2 LSA SCOPE AND RESPONSIBILITY 
 
Work carried out within AvSG1 suggests that software LSA needs be carried out as early 
as possible in the procurement lifecycle, specifically during the Concept and Assessment 
phases; one question that I have become increasingly more focused on is who should 
carry out this LSA.  I believe the answer to this question is dependent upon the LSA tasks 
to be performed, the depth of analysis required and availability of appropriately skilled 
personnel, factors that are in turn dependent upon the project’s phase in the procurement 
lifecycle. 
 
LSA comprises of 5 task areas, which are summarised as follows: 
 

• 100 Series LSA Tasks.  These planning tasks are performed to enable 
formal programme planning and review.  It should be noted that these tasks 
are biased towards the management of contracted LSA and are not wholly 
appropriate for application during the Concept and Assessment phases, 
when LSA should be carried out by the MoD. 

 
- Development of an Early LSA Strategy – Task 101.  The aim of this 

task is to provide visibility of the programme strategy such that an 
efficient and unified approach to support analysis can be achieved. 

 
- LSA Plan – Task 102.  This task covers the creation of the LSA Plan, 

its acceptance and update. 
 

- Programme and Design Reviews – Task 103.  This task ensures that 
a review process is established, implemented and maintained.  The 
aim of these reviews is to ensure that the LSA process is effective. 

 
• 200 Series LSA Tasks.  These tasks are carried out to gain an understanding 

of the Users supportability requirements, constraints and goals. 
 

- Use Study – Task 201.  The aim of this task is to identify pertinent 
supportability factors by considering the nature of software and likely 
need for support. 

 
- Mission Hardware, Software and Support System Standardisation – 

Task 202.  The aim of this task is to identify standardisation related 
constraints and opportunities; this includes an assessment of data 
standardisation needs. 

 

                                                 
‡ The lifecycle utilised by the MOD for the acquisition of equipment capability; comprising of the following 
   phases: Concept, Assessment, Demonstration, Manufacture, In-Service and Disposal. 

12 



 

- Comparative Analysis – Task 203.  This task provides insight into 
potential supportability factors through quantitative analysis of existing 
comparable systems; in effect this task offers an excellent opportunity 
to identify cost and availability drivers by learning from experience. 

 
- Technological Opportunities – Task 204.  The aim of this task is to 

identify technological related constraints and opportunities.  The task 
endeavours to influence technology selection based on system 
supportability rather than the provision of functionality. 

 
- Supportability Related Design Factors – Task 205.  This task 

documents supportability factors and the system’s sensitivity to their 
variation.  It uses these factors to form the basis of supportability 
objectives (performance related requirements) that need to be 
considered during system development. 

 
• 300 Series LSA Tasks.  These tasks are carried out to gain an understanding 

of support system alternatives and enable the selection of the most 
appropriate support solution based on qualitative and quantitative factors. 

 
- Functional Requirements Identification – Task 301.  This task 

identifies potential support system functional requirements.  These 
functions are then decomposed into activities, which in turn can be 
used as the basis for creating a task inventory. 

 
- Support System Alternatives – Task 302.  This task explores and 

documents potential support options capable of satisfying the support 
need. 

 
- Evaluation of Alternatives and Trade-off Analysis – Task 303.  This 

task assesses the support options and generates qualitative and 
quantitative trade-off criteria that need to be considered during 
support option selection. 

 
• 400 Series LSA Tasks.   This task series is responsible for the identification 

of comprehensive logistic support requirements.  These requirements 
capture the detailed characteristics of the chosen support option, such that 
the support need can be fulfilled. 

 
- Task Analysis – Task 401.  The purpose of this task is to identify all 

support resource, timing, location and IPR requirements. 
 

- Early Fielding Analysis – Task 402.  The purpose of this task is to 
determine the impact on existing systems and support systems that 
are attributable to the new equipment.  Potential impact areas include; 
the provision of new skills, new methods for software replication and 
transfer, new methods for configuration management and back-up, 
the need to make adaptive modifications, and the need for new 
software maintenance facilities. 

 

13 



 

- Post Production Support Analysis – Task 403.  This task aims to 
identify possible through-life support issues including obsolescence 
management  (transfer devices, development environment and 
software licences), and post modification integrity assurance 
(including safety and security). 

 
• 500 Series LSA Tasks.  This task is carried out to begin the process of 

progressively assuring that supportability requirements are achieved and 
deficiencies corrected where necessary. 

 
- Supportability Test, Evaluation and Verification – Task 501.  This task 

documents supportability assessment considerations and objectives 
that embrace best practice.  These considerations and objectives will 
then be used to formulate supportability assessment criteria as the 
project matures. 

 
In general, as a project progresses from the Concept phase through to the end of the 
Assessment phase, its LSA migrates from that of developing domain understanding, 
identifying the support need and determining significant support related design factors, to 
one of maintaining inter-domain congruency, stating the system support requirements and 
influencing design (product and process) for support.  This migration is enabled by the 
provision of maturing project data, without which LSA cannot fulfil the need to provide an 
informed, justified and traceable case on which to select and develop a support solution. 
 
In order to carry out software LSA a specialised set of skills is required.  Personnel have to 
understand the procurement process, support analysis techniques and factors specific to 
the software domain.  Within the MOD an Integrated Project Team (IPT) is assigned 
responsibility for procuring and bringing into service systems that will meet the defence 
need.  As with all government organisations the staffing of these IPTs is limited which, 
although not discussed here, is a particularly constraining factor during the early 
procurement phases.  In recognition of this situation, organisations such as AvSG exist to 
support IPTs, this said, whilst AvSG is a support organisation it is not permitted to perform 
manpower substitution by acting as a pool of freely available personnel. 
 
AvSG contains teams covering many of the system engineering disciplines, Software 
Supportability being just one of them.  The strength of these teams is that they focus on 
their own domains, creating single points of expertise.  In particular the Software 
Supportability (SS) Team provides a vehicle for ensuring commonality and improvement in 
the application of software support analysis techniques.  From this insight, it is evident that 
AvSG has to perform a balancing act; it must provide assistance to the IPTs whilst not 
taking complete ownership and responsibility for the production of support analysis 
outputs.  This balancing act is critical to the continued success of AvSG, as failure in either 
mode might result in the scrutiny of AvSG tasks and a potential reduction in staffing levels. 
 
Guidance on LSA task responsibility as documented within Def Stan 00-6016 is given at 
Table 1.  Within this guidance, responsibility is allocated to the Central Customer (the 
capability owner), IPT, Contractor§, or Customer 2 (the capability provider).  Unfortunately, 
I believe that these differing stakeholders serve only to complicate the issue of LSA 

                                                 
§ Where the Contractor is the vendor supplying the equipment being procured. 

14 



 

responsibility and implementation, as whilst Def Stan 00-60 provides recommendation on 
LSA responsibility, it offers no assistance on the subject of who is best placed to carry it 
out.  The heading ‘Responsible Agency’ used within Table 1, is defined within Def Stan 00-
60 as: 
 

“The term ‘Responsible Agency’ indicates who could be responsible for initiating 
action under each task.” 

 
Note that the definition itself is very weak and by no means delegates responsibility to any 
single organisation, as such the overarching procurement responsibility owned by the IPT 
must act as the authority under which LSA is managed and carried out. 
 

Task Description Responsible Agency 
101 Development of an Early LSA Strategy Central Customer and IPT 
102 LSA Plan IPT 
103 Programme and Design Reviews IPT and / or Contractor 
201 Use Study Central Customer, IPT and / or Contractor 
202 Software and Support System Standardisation IPT and / or Contractor 
203 Comparative Analysis IPT and / or Contractor 
204 Technological Opportunities IPT and / or Contractor 
205 Supportability Related Design Factors IPT and / or Contractor 
301 Functional Requirements Identification Contractor 
302 Support System Alternatives IPT and / or Contractor 
303 Evaluation of Alternatives and Trade-off Analysis IPT and / or Contractor 
401 Task Analysis Contractor 
402 Early Fielding Analysis IPT, Customer 2 and / or Contractor 
403 Post Production Support Analysis IPT, Customer 2 and / or Contractor 
501 Supportability Test, Evaluation and Verification IPT, Customer 2 and / or Contractor 

 
Table 1 – Def Stan 00-60 Defined LSA Task Responsibility 

 
To simplify the issue of who should carry out LSA, I believe that it is best to consider only 
two basic options, these being the MOD or a Service Supplier**.  This belief is based on 
the premise that there are only two fundamental choices available to the MOD, it either 
carries out the analysis itself or it pays another organisation to complete it on their behalf. 
 
Of these two options, the latter is often considered to be the most favourable by LSA 
managers as it enables the MOD to discharge its responsibility to another organisation.  
My perspective is somewhat different though; I believe that, should the MOD choose to 
discharge its analysis responsibility to another organisation, it at best increases the risk of 
support requirements definition failure and at worst becomes exposed to exploitation 
during software support activities.  Therefore, to avoid this situation or at least manage it, 
the MOD must establish and maintain domain competency, oversee the analysis process 
and ensure it is fully involved in the requirements identification process. 
 
To assist with the decision of who should conduct LSA, three basic factors need to be 
assessed and balanced, these being cost, benefit and feasibility.  These factors vary in 
accordance with LSA tasks to be performed, the depth of analysis required and availability 
of appropriately skilled personnel, which in turn is dependent upon the project’s phase in 
the procurement lifecycle.  Based on experiences gained from numerous projects, the 
                                                 
** Where the Service Supplier is any non-MOD organisation bought in to carryout LSA, either related or 
   unrelated to the vendor supplying the equipment being procured. 

15 



 

relationship between these factors for LSA conducted by the MOD or a Service Supplier is 
shown in Tables 2 and 3 respectively. 
 
 Procurement Lifecycle Phases 
 Concept Assessment Demonstration Manufacture 
Strengths •  Best placed to 

understand the 
problem domain and 
identify the support 
need. 
•  Resources 
available at no 
additional cost to an 
IPT. 

•  Best placed to 
understand the 
problem domain and 
state the support 
need. 
•  Resources 
available at no 
additional cost to an 
IPT. 

•  Best placed to 
understand the 
problem domain and 
review LSA outputs 
from the Contractor. 
•  Resources 
available at no 
additional cost to an 
IPT. 

•  Best placed to 
understand the 
problem domain and 
review LSA outputs 
from the Contractor. 
•  Resources 
available at no 
additional cost to an 
IPT. 

Weaknesses •  Insufficient 
resources available 
to support all 
procurements. 
 

•  Insufficient 
resources available 
to support all 
procurements. 
•  Availability of 
project data and the 
completion of 
quantitative LSA is 
often hampered 
when analysis is 
carried out by non-
IPT based 
personnel. 

•  Insufficient 
resources available 
to support all 
procurements. 
•  Quantitative LSA 
is often hampered 
by poor project data 
availability when 
analysis is carried 
out by non-IPT 
based personnel. 
•  MOD personnel 
do not hold 
necessary technical 
skills and project 
experience to 
complete detailed 
system analysis. 

•  Insufficient 
resources available 
to support all 
procurements. 
•  Quantitative LSA 
is often hampered 
by poor project data 
availability when 
analysis is carried 
out by non-IPT 
based personnel.. 
•  MOD personnel 
do not hold 
necessary technical 
skills and project 
experience to 
complete detailed 
system analysis. 

 
Table 2 – MOD Related Factors 

 
 Procurement Lifecycle Phases 
 Concept Assessment Demonstration Manufacture 
Strengths •  Improved 

likelihood of 
resource availability. 

•  Improved 
likelihood of 
resource availability. 
•  Improved 
availability of project 
data if the 
Contractor carries 
out LSA. 

•  Improved 
likelihood of 
resource availability. 
•  Improved 
availability of project 
data if the 
Contractor carries 
out LSA. 
•  Improved 
availability of 
technical skills and 
project experience if 
the Contractor 
carries out LSA. 

•  Improved 
likelihood of 
resource availability. 
•  Improved 
availability of project 
data if the 
Contractor carries 
out LSA. 
•  Improved 
availability of 
technical skills and 
project experience if 
the Contractor 
carries out LSA. 

Weaknesses •  Additional burden 
of contract 
management. 
•  The MOD has to 
pay for the analysis. 
 
 

•  Additional burden 
of contract 
management. 
•  The MOD has to 
pay for the analysis. 
 
 

•  Additional burden 
of contract 
management. 
•  The MOD has to 
pay for the analysis. 
 
 

•  Additional burden 
of contract 
management. 
•  The MOD has to 
pay for the analysis. 
 
  

16 



 

 Procurement Lifecycle Phases 
 Concept Assessment Demonstration Manufacture 

•  Additional effort is 
required to gain an 
understanding of the 
operational 
environment and 
customer support 
needs. 
•  Increased 
exposure to 
exploitation during 
software support 
activities when 
analysis is 
conducted by the 
Contractor and 
insufficiently 
monitored by the 
MOD. 

•  Increased 
likelihood of 
requirements 
definition failure 
caused by 
unfamiliarity with 
operational 
environment. 
•  Increased 
exposure to 
exploitation during 
software support 
activities when 
analysis is 
conducted by the 
Contractor and 
insufficiently 
monitored by the 
MOD. 

•  Quantitative LSA 
is often hampered 
by poor project data 
availability when 
analysis is carried 
out by non-
Contractor based 
personnel. 
•  Non-Contractor 
based personnel will 
not hold necessary 
project experience 
to complete detailed 
system analysis. 

•  Quantitative LSA 
is often hampered 
by poor project data 
availability when 
analysis is carried 
out by non-
Contractor based 
personnel. 
•  Non-Contractor 
based personnel will 
not hold necessary 
project experience 
to complete detailed 
system analysis. 

 
Table 3 – Service Supplier Related Factors 

 
With these factors in mind, I suggest that where resources allow, there is very little to be 
gained by having a non-MOD organisation carry out LSA during the Concept phase and 
early in the Assessment phase.  Use of a Service Supplier other than the Contractor would 
provide some separation of interests between the organisation carrying out analysis and 
the organisation that will eventually provide support, but this option will suffer from many of 
the weaknesses common to both the MOD and the Contractor.  Based on the grounds that 
during product and support solution development only the Contractor will have the 
necessary access to vital product data; I suggest that as a project matures through to the 
Demonstration and Manufacture phases, it is impracticable to expect any organisation 
other than the Contractor to carry out LSA. 
 
2.3 APPROACH AND IMPLEMENTATION 
 
The goal of FOAS LSA was to produce timely outputs capable of providing a basis on 
which products and processes might be influence for supportability, with the aim of 
reducing software whole life support costs.  To date this has been managed by focusing 
on functional analysis, where functional analysis only considers the roles and services that 
a system is required to provide, and specifically does not concern itself with how these 
roles or services will be provided.  In this way all analyses should remain valid regardless 
of eventual system implementation.  Functional analysis provides further benefit in that it 
supports analysis evolution through its ability to operate on maturing data.  As with all 
initial or foundation analysis, a number of assumptions have been stated to bridge data 
and information voids, as such the qualification and maturation of these assumptions has 
become a vital element of the analysis process. 
 
For the FOAS project, whilst the IPT maintained LSA responsibility, the SS Team within 
AvSG was tasked with its implementation.  To meet schedule requirements and gain the 
best opportunity to influence design, it was decided that the SS Team would deliver two 
sets of outputs, qualitative and quantitative.  This approach was taken as in the absence of 

17 



 

any other analysis, I had to identify all the areas of concern and gain an understanding of 
their potential impact on system support.  By initially taking a purely qualitative viewpoint, I 
hoped to gain a broad understanding of the problem domain.  This in turn would then be 
used as the basis to identify areas of high gain on which future qualitative analysis could 
be focused. 
 
To date only the qualitative work has been carried out, which occurred during the latter 
stages of the Concept phase and first few weeks of the Assessment phase.  This work 
comprised of an initial iteration of the 200, 300, and 500 series tasks.  As expected, it was 
impossible to carry out an in-depth analysis of each FOAS element at this time, as the 
project is very early in the procurement lifecycle and no system composition or 
implementation decisions have been made.  Knowing the potential limitations of this LSA, 
the approach taken was to identify the major areas of supportability concern by covering 
the broadest range of support analysis topics possible, as such FOAS LSA was carried out 
as previously described with the exception of: 
 

• 300 Series LSA Tasks.  Due to the lack of project specific data these tasks 
were only carried out qualitatively.  Although limited in application this task 
still added value as it facilitated a first-cut selection of support solutions 
based on basic viability criteria. 

 
- Support System Alternatives – Task 302.  Although very early in the 

procurement lifecycle, this task limited potential support options 
through categorization.  The need to limit support options was driven 
by the reality that analysis cannot be carried out for an infinite number 
of potential support providers.  The use of categorization was 
appropriate, as it enabled early analysis within minimal constraints. 

 
- Evaluation of Alternatives and Trade-off Analysis – Task 303.  This 

task qualitatively assesses support options (ranging from unviable to 
favourable) by considering the relative ability of categorized support 
providers to fulfil support function needs.  This assessment has 
provided value in that it has enabled the focusing of effort for further 
quantitative analysis. 

 
Notably missing from FOAS LSA is the 100 and 400 series tasks.  These tasks were not 
carried out as they were considered to be of little value at this time.  The rationale for this 
being as follows: 
 

• 100 Series Tasks.  The LSA was carried out solely by a MOD organisation.  
Whist a project plan was created to assist with the achievement of 
milestones; this plan was not established for the purposes of formal 
programme review or the negotiation staged payments, as such the total 
application of these tasks would have been inefficient and inappropriate. 

 
• 400 Series Tasks.  This collection of tasks focuses on identifying the detailed 

characteristics of the chosen support option.  At this time, when no support 
option has been chosen, this task cannot be carried to any depth greater 
than that facilitated under the 300 series tasks.  Typically this task series is 

18 



 

undertaken as a project reaches the Demonstration and Manufacture phases 
of the procurement lifecycle. 

 
This work was presented to the FOAS Integrated Logistics Support Manager (ILSM) and 
the scrutineers involved in the appraisal of FOAS LSA prior to Initial Gate†† approval.  The 
outputs were presented in a series of reports, which effectively fulfilled the role previously 
performed by a SSPP.  The work, completed on schedule over a twenty-four month period, 
was well received by both recipients and placed the FOAS IPT in a good position for its 
Initial Gate submission.  However, as with all emerging disciplines, a number of 
improvements could be made if the analysis were to be conducted again, the most 
pertinent of these being as follows: 
 

• Facilitation.  Although only qualitative at this time, an amount of project data 
is still required to enable LSA completion; this is particularly the case for 
Task 203 – Comparative Analysis.  For the FOAS project this data was not 
readily available as the FOAS IPT was formed to procure new capability and 
did not have any direct links to IPTs currently supporting similar platforms or 
equipment.  This situation resulted in the SS Team having to approach 
numerous MOD organisations requesting what was commercially sensitive or 
even restricted data; requests that often needed a great deal of diplomacy 
and negotiation to secure data release and use.  Unfortunately, due to how 
the Statement of Work (SOW) had been established between the FOAS IPT 
and the SS Team, on occasions when the release of sensitive data was 
delayed, the SS Team held the risk of not achieving agreed project 
milestones.  To avoid this situation from occurring during future projects and 
improve IPT awareness of the risks associated with the timely completion of 
LSA, I suggest that the role of LSA facilitator is delegated to a member of the 
IPT.  The facilitator is to take responsibility for the provision of project related 
data; as such the facilitator is to be of a sufficient grade to enable 
communication at an appropriate level across organisations. 

 
• Authority and Sponsorship.  During the implementation of LSA numerous 

recommendations, design factors and support requirements are identified.  
Having been identified, these outputs can only realise some value if they are 
allowed to influence a project such that supportability is improved.  Within an 
IPT managerial roles in the domains of System Requirements, Support, 
Safety and Security are rarely performed by the same person, as such prior 
to the expenditure of any effort on LSA, communication and authority 
channels need to be established between all necessary stakeholders.  To 
fulfil this function between the IPT and the organisation conducting LSA, I 
again suggest that a LSA facilitator should be established and in addition to 
their previously stated role, the facilitator must also hold an authority to 
influence project development.  I further suggest that the facilitator should act 
as LSA Sponsor, as I believe this will improve the likelihood of LSA outputs 
being accepted and championed during project development. 

 

                                                 
†† The point at which the Business Case is submitted to the approving authority, making the case for 
    proposed expenditure on the Assessment phase of the project. 

19 



 

• Method.  Prior to the FOAS project, neither the MOD nor a Service Supplier 
had carried out Software LSA at such an early time in the procurement 
lifecycle, with the specific goal of influencing software products and 
processes to reduce Whole Life Costs (WLC).  As such, whilst guidance was 
available within Def Stan 00-60, without the ability to refer to ‘best practice’ 
LSA outputs, a degree of uncertainty existed as to the necessary content of 
some LSA task outputs.  As previously discussed, LSA comprises of a 
number of tasks, however unmentioned until now is the fact that each of 
these tasks comprises of a number of sub-tasks.  These sub-tasks add extra 
structure to the LSA framework and are intended to assist with 
implementation.  This said, we must now remember that the implementation 
of Def Stan 00-60, as intended by the standard, is not designed for the early 
procurement lifecycle phases.  With these two major factors in mind, it was 
decided to carry out ‘Top Down’ task level LSA by focusing on the overall 
aim of each task rather than becoming preoccupied with the specific 
implementation of any one sub-task.  This decision was made as it was 
considered to be the most appropriate means by which LSA could be broadly 
applied and domain experience developed.  For future implementations of 
LSA, I suggest that this method should not be followed.  Now that an initial 
set of LSA documentation has been produced, and much experienced 
gained, a ‘Bottom Up’ sub-task approach to LSA can be adopted.  In this way 
each of the LSA component parts can be addressed as opportunity allows, 
which will assist with the management and timely completion of outputs.  
Evidence to this fact has been provided by more recent analysis conducted 
for a mission system upgrade, which was completed quicker and to a greater 
depth than that of the FOAS project. 

 
• Correctness and Completeness.  As a side effect of the original task 

selection and the completion of LSA in a Top Down manner, some 
necessary analysis outputs were inadequate or completely overlooked.  This 
required corrective action later in the analysis process, the most notable of 
these being the late formulation of Supportability Performance Requirements 
for Initial Gate and inclusion in the User Requirements Document.  Now that 
the initial set of LSA documentation has been produced, it is evident that the 
Concept phase work, which effectively only addressed the 200 series LSA 
tasks, was insufficient.  Subsequent Assessment phase LSA, consisting of 
the 300 series and 500 series tasks, could have been produced during the 
Concept phase; this would have improved analysis completeness and 
enhanced the quality of outputs.  To prevent this situation from occurring in 
future projects, I suggest that future Concept phase analysis should, without 
exception, cover 200, 300 and 500 series LSA tasks.  With a foundation 
iteration of this analysis completed by Initial Gate, projects would be in a well 
informed position prior to embarking upon the Assessment phase, and 
improved position to select an alternative organisation to conduct future 
iterations of LSA. 

 
• Reporting.  In total five reports were generated to document the LSA outputs.  

These reports followed RAF writing convention; as such their format was 
compiled with little communication to or from the task Sponsor.  The body of 
each report covered analysis, conclusions and recommendations; where 

20 



 

necessary annexes were used to document data lists and detailed analysis.  
This approach proved to be unsatisfactory to the Sponsor as some of the 
reports were unwieldy and did not readily assist the reader in identifying 
pertinent supportability issues.  This was particularly the case for the first 
report that covered LSA tasks 201, 202 and 203 due to the high degree of 
coupling between them.  In future I suggest that, whilst still following RAF 
writing conventions, the body of each report should only cover a summary of 
the analysis output.  The LSA itself should be contained within annexes, and 
data lists or further detailed analysis should be contained with appendices to 
the appropriate annex.  Great consideration should be made of the potential 
impact on readability if multiple tasks are to be covered within a single report, 
and by default LSA tasks should be presented as singular task documents. 

 
SUMMARY 
 
This section of work has been produced to help identify some of the common causes of 
support analysis failure.  This has been achieved through an examination of guidance 
material provided by the MOD on the application of LSA to software and a review of the 
support analysis carried out for the FOAS project. 
 
To assist with the achievement of support effectiveness and efficiency the support need 
must be understood.  However, the MOD does not have a rigorous method to capture and 
promulgate support analysis, which results in supportability decisions becoming 
untraceable, ill-informed and unjustified.  To further hinder the LSA process, the MOD has 
allowed its software analysis capability to erode placing the MOD in a position of 
vulnerability through support exploitation. 
 
Guidance provided within Def Stan 00-60 does not help to reduce the risk of support 
analysis failure, as outputs created through its application occur when the best opportunity 
to influence system design for support has been lost.  Instead, the spirit of Def Stan 00-60 
needs to be considered, such that supportability design factors can be established at a 
time when they can be used to influence product and process design. 
 
Further to understanding when to carry out LSA, the question of who should carry it out 
needs to be answered.  This issue is dependent upon factors that include: the LSA tasks 
to be performed, the depth of analysis required and availability of appropriately skilled 
personnel.  Def Stan 00-60 offers little assistance on this matter as it only suggests 
organisations that could hold responsibility for initiating LSA. 
 
The MOD can either carry out LSA itself or pay another organisation to complete it on their 
behalf, of which the latter is often considered to be the most favourable by LSA managers.  
Should the MOD choose to discharge its analysis responsibility to another organisation, 
the risk of support requirements definition failure and support exploitation increases.  
However, this situation can be managed if the MOD establishes and maintains domain 
competency, oversees the analysis process and ensures it is fully involved in the 
requirements identification process. 
 
 
 

21 



 

There is very little to be gained by having a non-MOD organisation carry out LSA during 
the Concept phase and early in the Assessment phase.  But as a project matures through 
to the Demonstration and Manufacture phases, it is impracticable to expect any 
organisation other than the Contractor to carry out LSA. 
 
The goal of FOAS LSA was to produce timely outputs capable of providing a basis on 
which products and processes might be influenced for supportability.  This has been 
managed by focusing the roles and services that a system is required to provide.  In this 
way all analyses should remain valid regardless of eventual system implementation.  
Schedule requirements were managed through the division of outputs into qualitative and 
quantitative phases.  Initially a purely qualitative viewpoint was adopted such that a broad 
understanding of the problem domain could be established. 
 
To date only qualitative Concept phase and Assessment phase work has been carried out, 
comprising of the 200, 300 and 500 series LSA tasks.  Due to project immaturity 
quantitative analysis of FOAS supportability has not been possible.  The work, completed 
on schedule over a twenty-four month period, was well received by the FOAS Integrated 
Logistics Support Manager (ILSM) and project scrutinisers.  However, if the analysis were 
to be conducted again improvements could be made in areas such as:  task establishment 
and data provision, LSA influence and value realisation, method and approach, and the 
timing, quality and appropriateness of outputs. 
 
Unfortunately, understanding the failings of existing guidance is not enough to overcome 
all the problems associated with software LSA.  This is because in addition to the 
aforementioned failings, software LSA guidance does not cover the complete set of factors 
that need to be addressed in order to ensure its outputs meet the customer’s need.  To 
resolve this situation the following sections will aim to identify the totality of support and 
present methods that should assist the analysis process. 
 

22 



 

SECTION 3 
 
SUPPORTABILITY REQUIREMENTS 
 
3.1 THE TOTALITY OF SUPPORT 
 
In order to derive support requirements we first had to gain an understanding of the 
functions that constitute an adequate support system; making visible those activities that 
are typically implied rather than stated, such as data support and integrity assurance.  This 
visibility will aid support acquisition and, where query and change drivers are common to 
multiple system elements, provide an indication of areas that should be highlighted as 
potentially critical items in terms of operational availability and capability sustainment.  
According to Boehm17, the software maintenance process is a continuous closed-loop 
cycle, as shown in Figure 6. 
 
 

 
User 

 
Evaluator 

 

Management 
(SCMB) 

 
Maintainer 

Queries 

Proposed 
SCRs 

SCRs  

Changed 
Software 

External Change Drivers Resources 

Operational Output 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – The Software Maintenance Life Cycle 
 
Whilst Boehm’s model provides a foundation for defining a support environment, it requires 
a little explanation to improve our understanding of the roles identified within it.  Within a 
military support context these roles are typically as follows: 
 

• User.  The User represents all the personnel that will utilise the software’s 
output to perform some task.  Users will provide feedback on the 
effectiveness and efficiency of the performed tasks, raising Software Queries 
if the system performance or integrity is questioned. 

 
• Evaluator.  The Evaluator examines and filters Software Queries (SQ).  The 

filtering of queries is carried out to identify the nature and cause of the 
originating event and justify query acceptance or rejection.  An accepted SQ 
will generate an associated proposed Software Change Request (SCR).  The 
evaluator typically performs the following activities: 

 

23 



 

- Reproduction of the problem. 
 

- Collection of information about each SCR. 
 

- Setting up of mechanisms to categorize results. 
 

• Management.  The Management represents the organisation that manages 
operational readiness through the control of software changes.  Decisions on 
the implementation of SCRs are based on the outputs of cost-benefit 
evaluation and risk analysis.  Evaluation is carried out for the financial cost of 
implementing the change against the need to maintain operation readiness.  
For systems in RAF Service the Software Configuration Management Board 
(SCMB) carries out this function18.  Management typically perform the 
following activities: 

 
- Cost-benefit evaluation and risk analysis. 

 
- SCR authorisation. 

 
- Generation of SCR priority list. 

 
• Maintainer.  The Maintainer represents the organisation that will implement 

the SCR.  The Maintainer is authorised by the Management to modify the 
software and satisfy the SCR.  The Management funds the Maintainers 
activities (and possibly their resources).  Maintainers typically perform the 
following activities: 

 
- Design of changes and tests. 

 
- Building of a new release, (comprising of; editing source code, 

archiving and quality assurance). 
 

- Testing. 
 
Within Def Stan 00-6015 a generic model of software support is provided, as shown in 
Figure 7.  This model, and the accompanying sub-models, are fundamentally different to 
Boehm’s, in that they have a function-based perspective. 
 
On inspection, although viewed from differing perspectives, these models exhibit a great 
deal of commonality.  However differences do exist, specifically in the areas of query 
evaluation and software operation.  As such, the sole use of either model would result in 
an incomplete support model and potential derivation of incomplete support requirements.  
Recognising this, work19 was undertaken within AvSG to create a new support model that 
would combine Boehm’s and Def Stan 00-60’s models and include any other functions of 
support significance; the initial output of this work is given in Figure 8. 
 
 
 
 
 

24 



 

Operation 

 

Mission 
Preparation 

 

Post-Mission 
Recovery 

 

Software 
Embodiment 

 

Software 
Modification 

Configuration 

Management RFC (Perfective) 

RFC 
(Corrective) 

 
Fault Reports 

(Data Download) 

 
Recovered 

System 

Mission 
Data 

 
Configured 
Hardware 

Unconfigured 
Hardware 

 
Documentation & 

Software 
Releases 

Documentation 

RFC (Adaptive) 

External Sources 

External Inputs 
(i.e. Mission Data) 

Configured  
System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Def Stan 00-60 Generic Model of Software Support 
 
 
 

 

Operations 
(1st Line) 

Software 
Mission Data

Software

Update Aircrew 
Manual

Enables

Enables  QinetiQ 
Operational 
Test And 
Evaluation 

Tasks Enable
Software Change

Request For 
Change

Issues
User

Guide

Mission 
Data 
Enables

       Problem 
Report 

Changed 
Software

  
Mission Data

Platform Platform 

Qualification 
& 

Certification 

 

Problem 
Evaluation 

 

Software 
Modification 

 

Change 
Management

 
Mission Data 

Support

     Using Post 
Flight Data 

Post
Flight
Data

 

  Request For 
Change 

       Changed 
Software

Request 
   For Change 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – Initial Support System Model 

25 



 

Unfortunately my view of this model is not complementary; I consider it to be ill-formed and 
a potential source of harm to any report’s credibility.  However, without an alternative it 
was used reluctantly within the 200 series LSA reports.  My opinion is based on a number 
of factors, which include but are not limited to the following: 
 

• The model lacks consistency – flows are allowed to represent both entities 
and actions. 

 
• The model does not represent the real world – problem reports can only 

originate from the Operations function. 
 

• The model is constrained – specific organisations are implied as function 
providers. 

 
• The model is not appropriate for universal application – system qualification 

and certification might not be a significant factor in all situations. 
 

• The model is prone to misinterpretation – the model had no supporting 
documentation. 

 
To rectify this situation, I refined the model prior to its reuse during the 300 and 500 series 
task reports, as illustrated in Figure 9.  With specific consideration of the aforementioned 
failings, the refinement process was based on a defined set of model rules and 
considerations, as such these rules and considerations have become a vital element of the 
model’s documentation set. 
 

• Model Rules.  The rules are based on the rationale that a model without 
consistency is not interpretable and that a model without fidelity is 
meaningless.  As such, these characteristics were used to define rules that 
govern how the model can be drawn and state its context and scope.  These 
rules are ‘unbreakable’ and any model that fails to accommodate even one 
rule is unacceptable.  The model rules are as follows: 

 
- All ovals are Functions; their names are ‘verb phrases’ and describe 

the tasks they perform. 
 

- All rectangles are Actors; their names are ‘noun phrases’ and describe 
things that interact with the support system. 

 
- All lines are Flows; their names are ‘noun phrases’ and describe items 

that transit around the support system. 
 

- The model must be able to accommodate all instances of modification 
types (Corrective, Adaptive, Perfective and Enhancement both 
internally and externally driven). 

 
- The model must be able to accommodate all support profiles (Peace 

Time, Crisis, Tension and War). 
 

26 



 

- We must be able to discharge any assumptions made about support 
within a valid model. 

 
• Model Considerations.  The considerations have been established to 

improve model value and give additional insight on its application.  The 
considerations help to keep the model generic and hence reusable, 
irrespective of the software item being analysed or the alternative support 
solutions available.  The considerations are not unbreakable; in fact as a 
project matures it would be appropriate to annotate models with support 
provider information to improve understanding. 

 
- The model shows support functions, which only describe the tasks to 

be performed.  Specifically, the model does not dictate organisational 
boundaries or physical locations. 

 
- The model should be equally valid for the system as an entity in itself 

and for each of its component parts.  This may include, but is not 
limited to, mission software, maintenance software and simulation 
software.  However, it is accepted that not all functions will attract the 
same level of support criticality. 

 
- Both the Flows and Software Operations function require analysis to 

understand how software and data products move throughout the 
support system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Support System Model 
 

 
Released Software 

 
Software Host 

 Software 
 

Operations 

 Data  
 

Support 

Data Released 
Software 

Released 
Software 

Modified 
Software 

Software 
Change 

Requests 
(SCR) 

 
Query Evaluation 

  
Integrity 

Assurance 

 
Users 

Need For 
Change 

  Change 
Management 

  Change Drivers 

 
Authorised 
SCRs 

Queries 

  Software 
Modification 

Data 

Originating Flow Feedback Flow 

27 



 

The final item of documentation is the model description.  The model description is as 
important as the model illustration itself, as the description details many of the subtleties 
through which the Support System Model obeys its ‘rules’ and accommodates the 
‘considerations’.  During FOAS analysis the Support System Model was presented without 
a description, which promoted misunderstanding and incorrect interpretation.  As such, I 
suggest that model illustrations and their descriptions are treated as inseparable elements 
of any Support System Model.  A generic model description, complementary to Figure 9, is 
as follows: 
 

• Users.  The term Users refers to all the personnel that interact with the 
system, specifically this includes the operators and support personnel.  
Inevitably, as these Users interact with the system software they will have 
questions about its operation, discover problems and generate ideas for 
adaptations, improvements and new functions (enhancements).  These 
queries, which capture all internally generated change needs, are formalised 
by creating a Query Report.  The Query Report captures all relevant 
information and is forwarded (along with any relevant data) to the Query 
Evaluation function. 

 
• External Change Drivers.  The term External Change Drivers refers to a 

source of change needs that originate from outside normal system operation.  
Examples of these change drivers include the need to sustain capability in 
response to data format changes and the need to preserve functionality in 
response to changes in interfacing software components or underlying 
hardware. 

 
• Software Host.  The term Software Host refers to the physical equipment in 

which the software and data resides, such that through its operation some 
function of the system is enabled. 

 
• Software Operations.  The Software Operations function comprises of:  

Software Operations Support – actions necessary to load, re-load, replicate, 
copy, label, store, distribute, recall or carry out any handling activity on 
software or firmware, Data Preparation And Recovery – the transfer of data 
to and from the Software Host for mission, maintenance, analysis or 
sanitization purposes. 

 
• Query Evaluation.  The Query Evaluation function evaluates and filters Query 

Reports to identify the cause of any query, categorizes the nature of any 
problems, remove duplicates and justify query acceptance or rejection.  
Some queries will generate Software Change Requests (SCR), which might 
relate to either the system documentation or code itself.  For all SCRs the 
Evaluators must assess the operational benefits, costs and risks of each 
change in support of the Change Management function. 

 
• Change Management.  The Change Management function manages 

operational capability and readiness through the control and prioritisation of 
software changes.  Change Management deals with user-initiated SCRs (via 
evaluated Query Reports) as well as externally driven change needs.  The 

28 



 

function reconciles demands for change with the business goals, constraints 
and available resources. 

 
• Data Support.  Within the Data Support function, Data refers to information, 

both mission and engineering related, loaded to or from the Software Host.  
This Data enables system functionality or performance analysis.  Specifically, 
the term Data does not relate to internally created variables, which have no 
use outside of system operation.  The Data Support function captures all the 
activities necessary to create, preserve, modify and analyse data, such that it 
becomes operationally useful. 

 
• Software Modification.  The Software Modification function is responsible for 

the implementation of Authorised SCRs.  In addition to this, it has to assess 
its own capacity for tasking and communicate this capacity to the Change 
Management function during the assessment and prioritisation of SCRs.  The 
output of Software Modification is a new software load, which after its release 
(and integrity assurance where necessary), is ready for use by the Software 
Host (as the system software) and Data Support function (in support of its 
own activities). 

 
• Integrity Assurance.  The Integrity Assurance function is responsible for 

verifying that software products are acceptable for release, i.e. they remain 
acceptably safe, secure, reliable or supportable for use after the 
implementation of Authorised SCRs.  It is important to realise that this 
function only represents the formulation of evidence into a statement of 
assured integrity for a desired quality characteristic.  Specifically, the function 
does not represent all the activities that build towards product integrity; these 
activities exist throughout the maintenance model.  This function can be 
bypassed where software products do not attract a specific need for integrity 
assurance 

 
3.2 SUPPORTABILITY REQUIREMENTS ENGINEERING 
 
Within the acquisition lifecycle support requirements should be derived via a two-stage 
process, an overview of this process is as follows: 
 

• The User’s support need is captured within the User Requirement Document 
(URD).  These needs describe the level of support considered necessary to 
satisfy projected operational usage of the new system. 

 
• The system characteristics, necessary to meet the User’s needs, are defined 

within the System Requirements Document (SRD).  These characteristics 
are used to form detailed requirements, which are then apportioned via the 
system and support system architecture and design, such that the desired 
supportability characteristics will emerge as the project develops. 

 
Within the procurement process, measures are in place to ensure that the SRD is 
traceable from the URD.  To control requirements creep and assist contract management, 
it is very difficult to impose SRD level supportability requirements without a parent User 

29 



 

requirement, as such the formulation of an appropriate and complete URD is a vital 
element of the procurement process. 
 
3.3 PERFORMANCE SUPPORT REQUIREMENTS 
 
Large systems such as FOAS have the potential to generate a vast amount of software 
queries and change drivers, but a system in a constant state of flux is unacceptable, as 
operators never gain the opportunity to become instinctive users.  This means that the 
support solution must be capable of both enabling and controlling change, balancing the 
need to sustain capability whilst maintaining operational effectiveness.  Within AvSG 
generic supportability performance requirements have been developed based on the 
outputs of FOAS and other20 LSA.  These performance requirements, which were 
developed after an assessment of the Support System Model, potential sources of change 
and a review of changes made by current RAF Software Support Teams, are documented 
in Table 4.  It is intended that elements of these requirements written in italics must be 
refined and ratified, such that they accurately represent the required support capability.  
Unfortunately, whilst the refinement of these requirements will be assisted by the 
‘quantifying’ phase of LSA, I believe that LSA alone is not an adequate means of achieving 
this goal due to the following factors: 
 

• Quantitative LSA is dependent upon system data that is not always 
immediately available.  Waiting for this data to become available could add a 
considerable and unacceptable delay to the acceptance of supportability 
related performance requirements. 

 
• LSA by its nature is limited as a means of refining and ratifying support 

requirements, this is because it focuses on data and analysis rather than 
discussion and agreement. 

 
In light of the limitations of LSA an alternative approach is necessary, one such method 
being initial requirement identification followed by stakeholder negotiation and ratification 
(potentially achieved at appropriate working levels of the Capability Working Group‡‡).  
Once agreed, these requirements should then be managed and matured as with all other 
system requirements. 
 
Within the Support System Model rules an inference§§ is made for scalable support in 
recognition of change driver criticality.  For the RAF saleability is accomplished through the 
application of an Urgent Operational Requirement (UOR) process.  The UOR process is 
typically initiated during times of Crisis, Tension or War when the implementation of 
mission critical modifications is often required in extremely short timescales.  In overview, 
the UOR process shortcuts effort intensive modification activities, accepting that 
modification rework will be necessary during peacetime to meet quality requirements.  The 
support performance requirements listed in Table 4 recognise the need for scaleable 
support by quoting response times for both routine (peace time) and mission critical 
changes (operationally essential – i.e. Crisis, Tension or War). 
 
 
                                                 
‡‡ The CWG is an adaptive, flexible and social process aimed at providing the advice from which the 
    empowered Director of Equipment Capability (the capability owner) makes decisions. 
§§ “The model must be able to accommodate all support profiles (Peace Time, Crisis, Tension and War).” 

30 



 

 
Suggested URD 

Section 
Unique 

Identifier Proposed Requirement 

1.1 The Authority requires that the capability shall be sustained and enhanced throughout 
its Service life. 

General 

1.2 The Authority requires that support of the capability addresses technical, tactical and 
User (air/ground operator and maintainer) issues in an integrated manner. 

Query 
Evaluation 

1.3 The Authority requires that queries about the capability are answered, on average, 
within 5 working days (queries may be answered by raising a Change Request (CR)). 

Change 1.4 
 
 
 
 

1.4.1 
 

1.4.2 
1.4.3 
1.4.4 

The Authority requires that authority-approved CRs for mission-critical functions, 
wherever found in the system, shall be satisfied and released for flight within, on 
average, 4 weeks (for UOR and safety-critical*** CRs) and 18 months (for all other 
CRs) of the CR being raised.  This change capability includes: 
 
•  CRs to sustain the capability in the presence of a change in environment software 
    interfaces or hardware. 
•  CRs to correct system problems and deficiencies. 
•  CRs to improve system performance, usability or support. 
•  CRs to enhance system capability. 
 

1.5 The Authority requires that a UOR for a mission data update†††, resulting from a new or 
changing threat, be available for operational use within 48 hours, maximum. 

Survivability 

1.6 The Authority requires that mission data sets be routinely updated for each theatre of 
operation every 6 months. 

Interoperability 1.7 The Authority requires that the system shall accept and use updates, to mission and 
engineering data sets, within the timescales specified (TBD) by the data provider for 
UOR and routine changes. 

Operations 
Support 

1.8 The Authority requires that changes to data and software be incorporated into the 
system under normal support arrangements and without adversely impacting 
operations or routine training. 

 
Table 4 – Supportability Performance Requirements 

 
3.4 FUNCTIONAL SUPPORT REQUIREMENTS 
 
Once refined and ratified, the performance requirements given in Table 4 will capture the 
level of service expected from the support system process.  However, the derivation of 
these performance characteristics is not all that can be achieved during early LSA; support 
function decomposition is also possible.  Functional requirement decomposition breaks 
down each of the functions identified within the support model and lists typical activities 
that might be performed within each function.  The purpose of this decomposition is to 
provide greater visibility of the MOD’s support expectations, facilitate future LSA, and 
assist initial supportability verification work through the creation of a task inventory against 
which reviews can be completed.  It is not however, the intention of functional 
decomposition to impose a support solution or constrain support provider options.  A 
support activity inventory distilled from the Support System Model is given in Appendix C, 
this provides a basic list of tasks that should be considered during further LSA; the list is 
not a finalised product and will require maturation as a project develops. 
 
 
 
 
 
 

                                                 
*** Safety-Critical CRs are those that result with the aircraft being grounded. 
††† It is assumed that mission data changes will not affect system certification. 

31 



 

SUMMARY 
 
This section is focused on identifying the totality of software support from an operational 
perspective and specifically endeavours to identify support requirements that are typically 
implied rather than stated.  The creation of an acceptable support model is considered to 
be the key to this work, as this model will be utilised throughout further LSA to assist with 
the production of consistent, complete and correct outputs. 
 
In order to derive support requirements an understanding of the functions that constitute 
an adequate support system is necessary, this understanding has been achieved through 
analysis of both academic and military support models.  Due to their differing perspectives, 
these models have been combined and refined to represent the totality of military software 
support.  The derived Support System Model is supported by a document set covering the 
model rules, considerations and description.  These documents are an integral element of 
the model as they help to gain confidence in its pedigree and discourage 
misunderstanding and incorrect interpretation. 
 
Within the acquisition lifecycle support requirements are developed via a two-stage 
process.  At first the User’s need (URD) is determined, then system characteristics (SRD) 
necessary to meet the User’s needs are defined.  Due to the relationship between the 
URD and SRD the formulation of an appropriate and complete URD is a vital element of 
the procurement process. 
 
It is unacceptable to allow operation systems to exist in a constant state of change as this 
prevents operators from becoming instinctive users.  As such, support systems must not 
only enable change but control it as well.  Performance support requirements need to be 
established that capture the level of service expected from the support system.  
Unfortunately, LSA alone cannot act as the authority by which performance support 
requirements are placed upon a system.  This is because LSA focuses on data and 
analysis rather than discussion and agreement. 
 
In addition to the documentation of performance support requirements, functional 
requirement decomposition is also possible at this time.  The decomposition of Support 
System Model functions will enable the identification of typical support activities, which will 
provide greater visibility of the MOD’s support expectations, facilitate future LSA and assist 
initial supportability verification work. 
 
In addition to understanding the support need, LSA practitioners have to be capable of 
analysing support from a software perspective.  This perspective change will require the 
transposition of traditionally hardware oriented guidance and techniques into the software 
domain.  The following section will discuss the most significant hardware analysis 
guidance and techniques, and suggest ways in which they can be interpreted for software. 
 
 

32 



 

SECTION 4 
 
SUPPORTABILITY ACHIEVEMENT AND SUSTAINMENT 
 
4.1 TRANSPOSITION OF ANALYSIS TECHNIQUES 
 
In the world of hardware engineering, component failure drives maintenance activities.  
Failure has two properties that need to be understood in order to derive an appropriate 
support solution, these being probability and severity.  Standard analysis techniques used 
to explore these properties include Reliability and Maintainability (R&M) engineering and 
Failure Modes Effects and Criticality Analysis (FMECA).  In addition to these techniques 
each item of hardware then undergoes Level of Repair Analysis (LORA) in order to 
ascertain the most cost effective support solution or maintenance policy.  To transpose 
these disciplines into the software engineering domain the nature of each technique needs 
to be defined and an assessment of its suitability made.  The definition21 and assessment 
of each discipline is as follows: 
 

• R&M. 
 

“Reliability – The ability of an item to perform a required function under 
stated conditions for a stated period of time.” 

 
“Maintainability – The ability of an item under stated conditions of use, to be 
retained or restored to a specified condition when maintenance is performed 
by personnel having specified skill levels, using prescribed procedures and 
resources.” 

 
• FMECA. 

 
“An analysis to identify potential design weaknesses through systematic, 
documented consideration of the following: 

 
- All likely ways in which a component or equipment can fail. 

 
- Causes for each mode. 

 
- The effects of each failure (which may be different for each mission 

phase). 
 

- The criticality for each failure both for safety and for mission success.” 
 

• LORA. 
 

“A systematic procedure to determine the cost of alternative maintenance 
options, taking into account such variables as spares support, ground 
equipment and manpower costs.” 

 
When considering R&M for hardware, item failure and its relationship with reliability is the 
main support activity initiator.  As discussed, software does not wear out, although it does 
fail, often resulting in the need for corrective maintenance.  It has already been shown that 

33 



 

the need for corrective changes only accounts for approximately 20% of all software 
modification, as such it is both the need for corrective change and the other change drivers 
(Adaptive, Perfective and Enhancement changes) that need to be considered as support 
activity initiators. 
 
FMECA can be carried out for software with the aim of influencing product design to 
improve reliability.  However, because all software changes require product modification, a 
greater need exists to influence design to improve changeability.  Whilst the use of 
FMECA might theoretically be possible, the use of this technique requires careful 
consideration for the following reasons: 
 

• “For systems that exhibit any degree of complexity, identifying all possible 
component failure modes - both singularly and in combination – becomes 
simply impossible.”22 

 
• “Waiting for detailed design completion is too late, but starting fault analysis 

without a design can be intimidating.  The Systems Engineer should 
understand how failure affects system behaviour before the design is 
completed.  Appropriate mitigation can then be designed into the system via 
the requirements.”23 

 
• “Detailed consideration of the failure effects caused by particular software 

faults is unlikely to be beneficial to the identification of support tasks.”24 
 
Recognising the limitations of FMECA, it is clear that analysis techniques, more 
appropriate and beneficial to the early procurement phases, are required.  Such 
techniques include: 
 

• Functional Failure Analysis (FFA) and Risk Analysis.  FFA and Risk Analysis 
can be used to explore the causes and impact of support process failure.  
This will give an indication of support function criticality and facilitate the 
focusing of effort in these high value areas during latter LSA. 

 
• Supportability Characteristic Identification.  The early identification of 

supportability related product and process characteristics could provide a 
direct feed into the development process such that system design and 
support concepts can be influenced for improved changeability. 

 
For software, the standard application of LORA is only applicable where equipment is 
removed or disassembled in order to carry out loading activities.  This is because in this 
instance the need to load software can be treated as just another trigger that initiates a 
hardware maintenance activity.  The use of LORA on software maintenance itself is not 
suitable for the following reasons: 
 

• Software is not repaired, that is, it is not returned to its original supplied state.  
As such, software LORA needs to consider all of the drivers of software 
modification and the effort and resources consumed by them. 

 

34 



 

• Unless a diverse‡‡‡ software backup has been developed, which is a highly 
improbable occurrence; there is no such thing as spare software – although it 
might be possible to regress to an older version of software of lesser 
capability.  Hence the ability to utilise spares, as an offset against product 
reliability, is an invalid premise. 

 
Therefore, software LORA, which would be better named Level of Service Analysis 
(LOSA), needs to consider the ability to modify and field software in time to sustain 
operational availability at an acceptable cost. 
 
4.2 RISK BASED APPROACH TO SOFTWARE SUPPORT 
 
The spectrum of support that can be applied to system is wide ranging; all elements of 
software can be fully supported for each function within the Support System Model  (see 
Figure 9), or in contrast, no support might be established.  However, both of these options 
are too costly, one in a financial sense, the other in terms of capability sustainment.  In 
short, the level of support must be balanced to meet the support need.  In the absence of 
an existing method, I propose that the balancing of support should comprise of a simple 
two-stage process, the identification of Software Significant Support Items (SSSI), and a 
determination of SSSI support criticality.  As the provision of software support can directly 
affect future capability, the selection process must be informed, justified and traceable, 
therefore I also recommend that proven techniques should be utilised to assist with this 
task. 
 
Taking risk to be a function of probability and impact25, support risk can be assigned for 
each functional element of system software within each of the Support System Model 
functions.  These risk assignments can then be used as a basis for SSSI selection.  This 
risk-based approach is not dissimilar to the techniques used in Def Stan 00-5626 for the 
management of system safety.  To illustrate this point, an example risk definition table is 
given in Table 5.  Risk characteristics for the considered support function are given under 
the Probability and Impact headings; where probability relates to the frequency of support 
function use and impact relates to the resultant effect on capability if the function fails.  The 
significance of the support function is then derived by consideration of the risk criticality, as 
defined in Table 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
‡‡‡ A diverse software product is one that has been developed following an intentionally different design such 
     that the probability of design related failure is reduced. 

35 



 

  Probability 

  

 Unacceptable Risk 

  

 Acceptable Risk 

  Fr
eq

ue
nt

 

P
ro

ba
bl

e 

O
cc

as
io

na
l 

R
em

ot
e 

Im
pr

ob
ab

le
 

Severe      

Significant      

Marginal      Im
pa

ct
 

Negligible      

 
Level 3 

 
Level 2 

 
Level 1 

Level 4

 
Table 5 – Support Risk Assignment 

 
Risk Criticality Interpretation 

4 Intolerable support risk. 

3 

Undesirable support risk, tolerable only if risk 
reduction is impracticable or if the costs are 
grossly disproportionate to the improvement 
gained. 

2 Tolerable support risk if the cost of risk reduction 
would exceed the improvement gained. 

1 Negligible support risk. 
 

Table 6 – Support Risk Definition 
 
For example purposes, use of Table 5 on a frequently modified item of mission critical 
Human Computer Interface software in the Software Modification function during 
peacetime, might be as follows: 
 
 • Inputs 
   

- Operational support profile = Peacetime (Routine Change). 
  - Probability of support function use = Probable. 
  - Potential capability impact if support function fails = Marginal. 
 
 • Outputs 
 
  - Support risk = Unacceptable. 
  - Support criticality = Level 3. 
 
The results of this example show that not providing a software modification support 
function for this element of software would be unacceptable, and specifically that the 
support system provided must be commensurate with its associated criticality.  However, 
without defining the impact and probability factors, the method can only serve as a guide 
as to how the identification of SSSIs could be carried out.  Definition of these factors will 
require an appropriate system functional breakdown.  For each functional element, an 
assessment of capability criticality needs to be made and rates of support function usage 
estimated. 

36 



 

 
4.3 NON-ECONOMIC LOSA 
 
Once the support significant software items have been determined and their relative 
support criticality assessed, alternative support options can be suggested for the purpose 
of exploring the most effective and efficient support solution.  In theory there are an infinite 
number of potential support option permutations, a fact that does not assist with the 
assessment alternatives.  To limit the scope of analyses and assist in the production of 
meaningful outputs early in the procurement lifecycle, the following support options were 
considered during FOAS analysis: 
 

• Industry Original Equipment Manufacturer (OEM).  Industry (OEM) solely 
manages and provides the support function. 

 
• Industry (3rd Party).  The support function is solely and independently 

managed and provided by Industry other than the OEM. 
 

• Service.  The support function is solely managed and provided by a MOD 
organisation. 

 
• Diverse.  The support function is provided by a combination of Industry 

(OEM), Industry (3rd Party) or Service, each working independently to fulfil 
allocated tasks. 

 
• Partnered.  The support function is provided by a fully cooperative and 

integrated combination of Industry (OEM), Industry (3rd Party) or Service. 
 

• No Support.  No support function is established. 
 
These categorized options were utilised as they accommodate all existing and proposed 
support scenarios and enable early analysis within minimal constraints.  Of these six 
options, Industry (3rd Party), Partnered and No Support are in addition to the traditional 
options.  These extra options were adopted as they enable beneficial analysis, as follows: 
 

• Industry (3rd Party).  Analysis of an Industry (3rd Party) option can simulate 
the need to establish software support if an Industry (OEM) based support 
solution fails.  Usage of Industry (OEM) support is commonplace within the 
MOD.  Failure of this support mode can arise when the MOD makes itself 
venerable to exploitation by having no alternative support option.  In this 
situation the MOD must pay the support provider, irrespective of cost, if they 
wish to maintain capability. 

 
• Partnered.  Present MOD support doctrine is focused on migrating from 

Organic Support §§§ to Contracting for Availability****.  As such, analysis of a 
partnered support option is necessary to explore the relative merits and 
trade-offs associated with this shift in support ethos. 

 

                                                 
§§§ In which a MOD organisation is the sole provider of support. 
**** In which support is provided by a MOD - Industry hybrid, or by Industry alone. 

37 



 

• No Support.  Consideration of the No Support option will provide an 
indication of the potential affect of support function failure and allow each of 
the support options to be assessed with respect to a common baseline.  This 
option is very appropriate for system components, such as embedded 
actuator software, that are well isolated from potential sources of change.  
The No Support option has further relevance for Commercial Off The Shelf 
(COTS) products, where the establishment of a bespoke support system 
might not be feasible. 

 
During the Concept phase for FOAS a full effectiveness and efficiency assessment of 
these options could not be carried out due to a lack of project data.  Notwithstanding this, a 
high-level qualitative assessment, based on a hypothetical Operation Flight Program 
(OFP)††††, was carried out to illustrate how the assessment technique can determine the 
feasibility of each support option.  This qualitative assessment constitutes a non-economic 
LOSA by sifting viable from unviable support options. This makes the analysis process 
more efficient by enabling effort intensive cost related LOSA to be prioritised for the most 
favourable options. 
 
The assessment technique, as applied in Appendix D, has been refined from work27 
carried out within AvSG to identify an appropriate support solution for the Harrier GR9.  
The refinement was necessary as the existing work approached this task from the 
perspective of reducing the cost of an existing product and support system, and 
considered only four supportability factors, these being: 
 

• Design Authority.  “[If the authority to make changes] was not vested in either 
[the Original Equipment Manufacturer] or MOD then it was decided that the 
process of obtaining it would prove impracticable or financially prohibitive.” 

 
• Intellectual Property Rights (IPR).  “If the IPR of the SSSI was vested in an 

organisation other than [the Original Equipment Manufacturer] or MOD, then 
it was felt that the cost of obtaining it (if at all possible) for the purposes of 
software modification could be potentially prohibitive.” 

 
• Frequency of Change.  “If the software frequency of change was historically 

(and expected to be) greater than 5 years [between changes], then it was 
decided that LSA would not identify and improve support alternatives other 
than that already in existence.” 

 
• Safety Criticality.  “If the SSSI contained [safety critical software] it was 

agreed that this would fall outside the current software modification 
capabilities of [the Original Equipment Manufacturer] and MOD.” 

 
This approach is inappropriate for the creation of new support systems as it does not 
consider the full extent of supportability factors and focuses on support constraints rather 
than the capability driven need to implement software modifications.  For new systems 
greater value can be achieved if products and processes are designed for supportability 
such that they satisfy the operational requirement. 
 

                                                 
†††† A military aircraft’s real time control application. 

38 



 

In overview, the refined technique assesses the relative advantages and disadvantages of 
an organisation’s ability to perform necessary support functions for each SSSI, and is 
based on an understanding of product and process characteristics that influence 
supportability.  These characteristics, identified through consideration of the Support 
System Model, Capability Maturity Model28, systems engineering principles and FOAS 
LSA, are documented within Appendix E.  Unfortunately, the assessment of support 
options is a subjective task, as a single organisation will not completely satisfy the support 
requirement for all functions of the Support System Model.  To reduce the variance of this 
subjectivity and maintain an informed, justified and traceable approach, a defined set of 
assessment and trade-off criteria must be established. 
 
The assessment output, given at Table 7, is reflective of current support capabilities, does 
not consider SSSI product characteristics and has no reference to support costs; which 
makes the analysis limited in its use and somewhat unattractive to IPTs.  This limitation 
must not however be allowed to derail the analysis process, as I believe the real value of 
this work will be gained when quantitative LOSA is completed.  Although not yet 
undertaken for the FOAS project, support cost estimation has been carried out for other 
projects within AvSG and, although in its infancy, this discipline has indicated its 
usefulness as a means for balancing support option selection for both appropriateness and 
affordability. 
 
 Support Option 

Provider 
Tasks 

Industry 
OEM 

Industry 3rd 
Party Service Diverse Partnered No Support 

Software 
Operations Unviable Unviable Favourable Viable Viable Unviable 

Query 
Evaluation Viable Viable Favourable Viable Viable Unviable 

Change 
Management Unviable Unviable Favourable Viable Favourable Unviable 

Software 
Modification Viable Unviable Unviable Viable Viable Unviable 

Integrity 
Assurance Viable Viable Unviable Viable Viable Unviable 

Data 
Support 

Not 
Assessed 

Not 
Assessed 

Not 
Assessed 

Not 
Assessed 

Not 
Assessed Unviable 

 
Table 7 – OFP Qualitative Support Option Selection 

 
To counter any challenges made on the worth of qualitative LOSA, I have presented an 
argument based on the premise that it is an invaluable stage of the support option 
selection process.  Further to this, I also suggest that it provides an opportunity to discover 
situations where product or process characteristics could to be improved in order to reduce 
the risk of support function failure; and that the optimum time to change these 
characteristics is early in the life cycle, when the ability to influence product design and 
support planning is greatest. 
 
4.4 SUPPORTABILITY AND TECHNOLOGY 
 
The use of new or emerging technologies is managed within the MOD through the 
application of a Technology Demonstrator Programme (TDP), as summarised at 
Appendix F.  TDPs are used to de-risk projects through progressive assurance by 

39 



 

ensuring that new technologies are of sufficient maturity prior to their utilisation on any 
military equipment.  The TDP is supported by a method for demonstrating technology 
maturity called the Technology Readiness Level (TRL).  Throughout the TDP process 
significant consideration is given to system support in recognition of the potential impact 
this can have on whole life costs.  For each TDP tender, Industry will respond with both the 
technology analysis and a means of demonstrating TRL achievement; TDPs are finally 
assessed through the use of a Tender Assessment Matrix, where a significant weighting is 
applied to supportability. 
 
For the FOAS project, whilst the TDP and associated TRL assessment processes provide 
a robust approach to the exploration and risk management of new technologies, I am 
concerned that the specific requirements of software supportability will not be addressed.  I 
base this concern on the fact that it is expected that software support will be addressed as 
part of general support analysis, and yet software supportability has not been explicitly 
stated as a primary enabler of capability sustainment.  Further to this, in the software 
domain, product maturity is more closely related to obsolescence than stability, as such 
the need to de-risk projects should be satisfied by a more appropriate method; which will 
be discussed under the heading of Supportability Validation And Verification. 
 
During the completion of LSA Task 204 – Technological Opportunities, a study of the Joint 
Strike Fighter‡‡‡‡ (JSF) was carried out to gain insight into software related technologies 
already being utilised by new projects, these technologies include29: 
 
 • Auto Coding.  Reducing the amount of manual coding. 
 

• Commercial Off The Shelf (COTS) Software.  Reducing the amount of 
development. 

 
• Reuse.  Reducing the amount of development. 

 
• Multiuse.  Using JSF developed code in several areas, both on and off 

aircraft, with the aim of reducing development and the total cost of 
ownership. 

 
Whilst it is commonly accepted that these technologies have the potential to reduce the 
initial development effort and cost, I have not been able to identify any analysis showing 
consideration of these technologies with respect to supportability benefit.  On further 
investigation, many technologies, such as those documented in Appendix G, claim to have 
the potential to improve software supportability through either product or process 
improvements.  Yet again no measure or index of these potential improvements could be 
found.  This lack of evidence, either academic or empirical, makes justification of 
technology utilisation problematic, as this should consider both the cost of implementation 
and potential impact on whole life savings. 
 
In an effort to at least partially solve this situation, I have ranked the potential benefits of 
the technologies listed in Appendix G.  This work, show in Appendix H, was produced by 
assessing each technology for its ability to limit the occurrence or impact of system change 
drivers (see Figure 4).  The relative benefit of software technologies shown in Table 8 

                                                 
‡‡‡‡ American developed aircraft being utilised by the MOD as a replacement for the Harrier in 2012. 

40 



 

lacks credibility as it is based on just one assessment method, as such it can only be used 
to identify issues for further consideration.  However, the results have already caused 
discussion, as they directly challenge MOD policy on the aggressive use of COTS 
products, which according to my analysis will only improve supportability by providing 
some isolation from adaptive changes.  Further studies on the role of technology within 
supportability could add great value to this work by providing alternative assessment 
methods and outputs; which could then be used to verify results and improve credibility.  I 
suggest that this could be taken forward by consideration of how technologies affect the 
distribution of effort, and relative cost of problem correction, within the maintenance 
lifecycle. 
 

Technology Opportunity 
Benefit Ranking 

(Sum change 
driver influence). 

Redefinition and refinement of the 
support infrastructure and processes. 97% 

Utilisation of reuse and multiuse. 97% 
Application of standards for 
development and support. 92% 

Process Improvement. 92% 
Organisationally defined and 
standardised CASE tools. 92% 

Organisationally defined and 
standardised software management 
tools. 

92% 

Organisationally defined and 
standardised Software Engineering 
Environment (SEE). 

92% 

Exploitation of automatic code 
generation. 87% 

Application of Object Orientation (OO). 65% 
Utilisation of Open Standards. 65% 
Standardised approach to mission data 
formatting and data loading. 51% 

Utilisation of Integrated Modular 
Avionics (IMA). 24% 

Utilisation of Commercial Off The Shelf 
(COTS) software. 24% 

 
Table 8 – Potential Benefits of Software Technology 

 
4.5 SUPPORTABILITY PRESERVATION 
 
The FOAS Support Strategy30 identifies the need for capability provision and sustainment 
with optimised WLC.  In software engineering terms, sustainment equates to the fulfilment 
of one basic function, the ability to continually implement and field modifications within 
required timescales on an affordable basis.  When software is modified the originating 
change driver should be satisfied or no value will have been added.  However, in addition 
to this, functionality not related to the modification must be maintained and original system 
quality characteristics preserved, examples of these characteristics are as follows: 
 
 
 

41 



 

• Safety Certification.  For safety related systems a significant amount of effort 
will have been invested in obtaining the necessary system certification.  In 
large and complex systems the relationships and dependencies between 
system elements can play a significant role in the mitigation of safety related 
functions.  The implication of any software modification must be predictable if 
system safety integrity is to be maintainable. 

 
• Security Accreditation.  The data classification requirements for military 

systems range from Unclassified to Top Secret; as a result of this the 
systems themselves attract an appropriate security classification.  The 
implementation of any software modification must not breach system security 
integrity else platform capability might be compromised in theatre. 

 
• Reliability.  Reliability from a software perspective is different to hardware in 

that it cannot be measured as the Mean Time Between Failure (MTBF).  This 
is because when a software error is corrected it is not restored back to its 
original supplied state; it is in fact modified and a new product is created.  
The essence of reliability does however hold, in that it captures the 
characteristic of how often failure is experienced by the user.  Software 
modification should not degrade the user perceived reliability of the system 
by implementing the desired change incorrectly or introducing errors. 

 
Supportability.  To produce maintainable software that can be modified in a 
timely manner and at an affordable cost, significant effort must be invested 
during its development.  If software modification is carried out without 
consideration of this non-functional characteristic, the ability to continually 
implement modifications will be eroded.  Once the ability to support software 
is lost the software investment is no longer protected and all of its 
stakeholders become exposed to the risk of a capability gap. 

 
In light of these factors it is evident that it is not enough to merely make changes, we need 
to be able do so in a supportable manner.  Hence, I suggest that supportability must focus 
on three factors: 
 

• Product characteristics. 
 

• Process characteristics. 
 

• Characteristics preservation. 
 
SUMMARY 
 
Within this section LSA guidance and techniques have been transposed into the software 
domain.  The purpose of this work is to bridge some of the voids and misunderstandings 
that exist in this area. 
 
In the world of hardware engineering disciplines such as Reliability and Maintainability 
(R&M) engineering, Failure Modes Effects and Criticality Analysis (FMECA) and Level of 
Repair Analysis (LORA) are used to derive appropriate support solutions.  Unfortunately 

42 



 

these disciplines are not directly applicable to software and require transposition prior to 
their use. 
 
When considering R&M for software, it is the need for corrective, adaptive, perfective and 
enhancement changes that need to be considered as support activity initiators.  The 
application of FMECA to software is very effort intensive and provides few valued outputs 
for supportability engineering, as such analysis techniques such as Functional Failure 
Analysis and supportability characteristic identification are required.  Unlike hardware, 
software is not repaired, that is, it is not returned to its original supplied state.  As such, 
software LORA needs to consider all of the drivers of software modification and the effort 
and resources consumed by them.  Software LORA, which would be better named Level 
of Service Analysis (LOSA), needs to consider the ability to modify and field software in 
time to sustain operational availability at an acceptable cost. 
 
To achieve efficiency, the level of support established must be balanced to meet the 
support need.  However, at present, an informed, justified and traceable means to achieve 
this balance does not exist.  To resolve this situation a process is required that identifies 
Software Significant Support Items (SSSI) and determines their operational criticality.  
Processes similar to this are already used by many risk-based management disciplines 
and, common to all of them, the appropriate definition of impact and probability factors is 
required. 
 
In theory there are an infinite number of potential support option permutations, a fact that 
does not assist with the assessment alternatives.  To overcome this situation support 
options have been categorized into six basic types.  These categorized options 
accommodate all existing and proposed support scenarios and enable early analysis 
within minimal constraints. 
 
Although limited in its use as a method for determining the most appropriate support 
solution, non-economic or qualitative LOSA is a fundamental stage of the support option 
selection process and provides an opportunity to discover situations where product or 
process characteristics can be improved in order to reduce support related risk. 
 
The use of new or emerging technologies is de-risked within the MOD through the 
application of a Technology Demonstrator Programme (TDP).  Whilst the TDP provides a 
robust approach to the exploration and risk management of new technologies, it does not 
explicitly recognise the role of software support as a primary enabler of capability 
sustainment. 
 
Whilst it is commonly accepted that many technologies have the potential to reduce the 
initial software development effort and cost, there is little or no analysis showing 
consideration of these technologies with respect to supportability benefit.  This lack of 
analysis, either academic or empirical, makes justification of technology utilisation 
problematic, as this should consider both the cost of implementation and potential impact 
on whole life cost.  In an effort to partially solve this situation, numerous technologies have 
been ranked according to its ability to limit the occurrence or impact of system change 
drivers.  Unfortunately this analysis lacks credibility as it is based on just one assessment 
method. 
 
 

43 



 

In software engineering terms, capability sustainment equates to the ability to continually 
implement and field modifications within required timescales on an affordable basis.  When 
software is modified the originating change driver should be satisfied or no value will have 
been added.  However, in addition to this, functionality not related to the modification must 
be maintained and original system quality characteristics preserved.  Hence, supportability 
must focus on three factors:  product characteristics, process characteristics and 
characteristics preservation. 
 
LSA will only be of benefit to a project if its outputs are allowed to influence system design 
for supportability.  Assuming adequate channels have been established to facilitate design 
influence, the remaining responsibility of the LSA practitioner is to progressively assure the 
achievement of desired system supportability characteristics.  The following section will 
discuss how progressive assurance can be initiated at the very outset of a project. 
 

44 



 

SECTION 5 
 
SUPPORTABILITY VALIDATION AND VERIFICATION 
 
5.1 SUPPORTABILITY ACHIEVEMENT THROUGH PROGRESSIVE ASSURANCE 
 
Having previously argued that the ability to influence product design and support planning 
is only possible if analysis is carried out in a timely manner.  I now suggest that this idea 
should be extended to include the early resolution of supportability product and process 
deficiencies.  In terms of corrective action costs, the most effective time to correct faults 
within a project, both product and process related, is during the requirements definition 
phase.  In fact Boehm9 has stated that a fault discovered during the requirements 
definition phase is approximately one thousand times cheaper to correct than if corrected 
during the in-service phase. 
 
Hopefully it is now evident that the development of a supportable system is dependent 
upon many interrelated characteristics.  Supportability is an emergent property and cannot 
be manufactured as an adjunct to any system; as such it can only be achieved by 
designing for supportability.  With consideration of these factors supportability verification 
and validation, just like any other form of testing, needs to be progressively assured from 
the very outset of the development process. 
 
Now that the need to test and indeed test early has been established, the first 
transposition of testing into the supportability domain is required.  This transposition will 
make visible some of the limitations relating to this subject, which will in turn assist with 
their management; the limitations are as follows: 
 

• The effectiveness of early testing will be influenced by the ability to predict 
the eventual operational environment and use profile, for instance it might 
not be possible to accurately predict operational software change triggers.  
Early supportability testing, although beneficial, will therefore be limited in its 
application and usefulness.  As the system matures any test case 
assumptions and their associated analysis should be revisited to ensure they 
remain valid. 

 
• Due to the almost infinite permutations of support factors, testing can never 

be absolute.  To balance the need to demonstrate support solution 
acceptability with the limitations created by time and resource constraints, 
the use of testing assumptions and hypotheses will be required.  As the 
system matures these assumptions and hypotheses should be revisited to 
ensure they remain valid. 

 
• Testing is carried out to find yet undiscovered faults and relies upon test 

cases that have a high probability of finding these faults.  As such, the test 
cases themselves should be reviewed by differing supportability stakeholders 
to ensure completeness of coverage and correctness. 

 
• The true output of testing is an indication of the existence of faults, this is 

best summarised by the following Pressman31 statement: 
 

45 



 

“Testing cannot show the absence of defects, it can only show that 
errors are present”§§§§. 

 
Residual risk, originating from undiscovered faults either in the analysis, 
assumptions or implementation, will always be present and as such will 
require management throughout the life of the system. 

 
• It is very easy to overlook or discount testing until products and processes 

become established.  This can often result in the late or rushed formulation 
of test objectives, or worse, it might become evident that some critical 
requirements are in fact not testable.  To avoid this situation, test objectives 
or at least a testing approach should be developed as soon as a requirement 
is identified and accepted. 

 
5.2 TEST AND EVALUATION STRATEGY 
 
Complementary to the concept of progressive assurance, an initial iteration of LSA Task 
501 – Supportability Test, Evaluation and Verification was carried out for the FOAS 
project.  According to the MOD’s own guidance32, this task is carried out to: 
 

“Validate the support solution adopted, once the system/equipment enters service 
(500 series tasks).” 

 
Unfortunately, this statement leads many people to believe that LSA Task 501 can only be 
undertaken once the system or equipment being procured enters into operational use.  
This however is not the case and, as already discussed, leaving the implementation of this 
task until that time can have a detrimental effect.  To combat the numerous challenges 
made on the appropriateness of this task early in the procurement lifecycle, the first activity 
undertaken was to define the scope and objectives of work to be completed at this time, as 
follows: 
 

• Scope.  This task covers the documentation of supportability assessment 
strategy considerations and objectives.  Without a defined product or support 
solution, considerations and objectives will be established that embrace best 
practice and principles which will remain valid irrespective of system 
implementation.  These considerations and objectives will then be used to 
formulate supportability assessment criteria as the project matures. 

 
• Objectives.  The principle objective of this task is to raise awareness of 

issues relating to software supportability assessment.  A secondary objective 
of this task is to provide early visibility of the MOD’s supportability 
assessment intentions, such that product design and support planning can 
be influenced to assist supportability demonstration.   

 
In line with Def Stan 00-6024, strategy considerations and objectives include coverage of 
both software operation and software support.  To give the analysis consistency and 

                                                 
§§§§ Although not referenced by Pressman, this quote is similar to Dijkstra’s: “Program testing can be used to 
      show the presence of bugs, but never to show their absence!” (Ref:  “Notes on Structured Programming”, 
      E. Dijkstra, T.H. – Report 70-WSK-30, 2nd Ed, p. EWD249-7, 1970). 

46 



 

enhance traceability, the implementation of Task 501 was undertaken with the continued 
application of the Support System Model (see Figure 9). 
 
5.3 SUPPORTABILITY ASSESSMENT AND MANAGEMENT TECHNIQUES 
 
Guidance within Def Stan 00-60 on the formulation of a test and evaluation strategy of 
Task 501 is as follows: 
 

• “Strategies for the evaluation of system supportability should include 
coverage of software operation and software support.  Direct measurements 
and observations may be used to verify that all operation and support 
activities (that do not involve design change) may be completed using the 
resources that have been allocated.  During the design and implementation 
stage measurements may be conducted on similar systems, under 
representative conditions.” 

 
• “As software modification activity is broadly similar to software development 

the same monitoring mechanism might be used both pre- and post- 
implementation.  Such a mechanism is most likely to be based on a metrics 
programme that provides information, among other things, on the rate at 
which software changes are requested and on software productivity.” 

 
Having worked with the FOAS IPTs on the formulation of a Software Strategy, I find this 
guidance is inappropriate and inadequate; inappropriate in that it encourages 
supportability assessment deferment, and inadequate in that it offers no information on 
how early confidence can be established that supportability is being adequately 
considered and managed.  To resolve this situation, and provide a foundation on which an 
informed strategy can be developed, my first action was to develop this guidance and 
provide useful information on the application of Task 501 to software supportability. 
 
Throughout development, confidence in the achievement of supportability characteristics 
can be established and maintained through the use of techniques such as: conformance 
review, conformance demonstration, development monitoring and maturity assessment; as 
follows: 
 

• Customer Product Conformance Reviews.  Periodical or event driven 
technical reviews carried out to assess the degree to which products and 
processes exhibit supportability characteristics.  Typically these reviews are 
carried out by the Customer or their nominated representative and are held 
at the developer’s premises. 

 
• Supplier Product Conformance Demonstration.  Periodical or event driven 

presentation of evidence used to demonstrate the degree to which products 
and processes exhibit supportability characteristics.  Typically the Supplier 
demonstrates supportability characteristics for an item or area selected by 
the Customer. 

 
• Customer Development Representation.  The placement of a Customer’s 

representative in the development environment throughout product and 
support process development.  The representative can either be, invited to, 

47 



 

or have the right to, access all areas of development and their associated 
technical or review meetings.  Confidence is gained through the continual 
monitoring of implementation decisions and milestone achievement. 

 
• Product and Process Development Maturity.  The selection of products, 

support processes or suppliers based on their maturity may improve 
confidence for the following reasons: 

 
- Reused software products and processes may already exhibit 

supportability characteristics without need for further work or 
demonstration. 

 
- Organisations may have already proved themselves to be reliable 

providers of supportable products and support processes. 
 
Each of these techniques exhibit differing strengths and weaknesses, a factor that needs 
to be considered during their inclusion into any supportability assessment strategy.  An 
overview of these strengths and weaknesses is given in Table 9.  From this, it is evident 
that no single technique is sufficient, and a hybrid of techniques will be required in order to 
achieve an acceptable level of confidence at optimal cost. 
 

Technique Strength Weakness 
Very effort consuming process. Customer 

Product 
Conformance 
Reviews 

Can provide a very high degree of 
confidence. Requires very specialised skills that might 

not be freely available to the Customer. 

Supplier Product 
Conformance 
Demonstration 

The Customer does not own the burden of 
evidence formulation and presentation. 

The Supplier is afforded an opportunity to 
hide problem areas. 

The Customer needs to permanently 
commit resources. 

Customer 
Development 
Representation 

Provides day-by-day feedback of 
supportability achievement rather than a 
potentially artificial snapshot. Problem issues can be discussed under 

the cover of unrelated projects. 
Minimal cost to the Customer. Product and 

Process Maturity Maturity assessment can provide good 
confidence in an organisation’s ability to 
consistently deliver products and services. 

Heavy reliance upon historical 
performance.  This might not be 
appropriate if the project or application 
under development utilises new or evolving 
principles or technologies. 

 
Table 9 – Method Strengths and Weaknesses 

 
As previously mentioned, supportability is an emergent property dependent upon many 
interrelated factors.  The management of supportability is therefore not a simple task.  
Standards such as SAE-JA-100433 suggest the use of a software supportability case as a 
means by which suppliers demonstrate that customer supportability requirements have 
been satisfied.  Such a case presents a readable overview of evidence, including 
references to more detailed evidence as appropriate to justify supportability claims.  This 
idea is very similar to the safety case used in the world of safety engineering to assist with 
the establishment and through life management of system safety integrity.  Therefore, I 
suggest that tools more traditionally related to the safety domain such as Claim-Argument-
Evidence and Goal Structured Notation (GSN) are equally applicable to supportability 
engineering, and should be considered as a means of presenting and managing a 
supportability case. 

48 



 

5.4 SUPPORTABILITY ASSESSMENT OBJECTIVES AND CRITERIA 
 
Assuming that the fulfilment of supportability objectives will build towards the attainment of 
supportable products and processes, objectives need to be established that are 
meaningful to those allocated responsibility for their achievement.  To assist with their 
achievement, each objective should be assigned a set of criteria by which objective 
satisfaction can be determined.  For the FOAS project, even though the support 
requirements have not yet been accepted, work was still undertaken in this area.  This 
work endeavoured to standardise and improve the quality of objectives through the 
definition of ‘SMART’ characteristics34 that each objective should exhibit: 
 

• Specific. 
 

“The objective should provide a precise description of expected outcome.” 
 

• Measurable. 
 

“It should be possible to determine when the objective has been achieved.  
Some means of making this judgment should be established.” 

 
• Assigned. 

 
“Responsibility for objective achievement should be assigned and agreed.” 

 
• Realistic. 

 
“Expected outcomes should be realistic for the assigned resources.” 

 
• Time-Related. 

 
“Objectives should be allocated a completion date and time.” 

 
During investigation into the most suitable definition of ‘SMART’ characteristics numerous 
variations were encountered.  The definition given above was selected on grounds that it 
best represents sentiment contained within the Capability Maturity Model28 Common 
Features and Level 2 Key Process Areas.  Of these SMART characteristics, it is expected 
that measurement will cause the greatest problem, especially during procurement, when 
many of the things we are trying to value are not tangible.  Taking reference from Fenton 
and Pfleeger35, I believe that the MOD needs to raise awareness and understanding of the 
factors associated with measurement, and provide guidance on the ways in which 
products and processes can be measured or assessed for their appropriateness. 
 

“The gap between how we do measure and how we could measure is still larger 
than it should be.  A key reason for this gap between potential and practice has 
been the lack of a coordinated, comprehensive framework for understanding and 
using measurement.” 

 
In summary of their work, two distinct forms of measurement can be taken in two differing 
ways, these being: 
 

49 



 

• Direct Measurement. 
 

“Direct measurement of an attribute of an entity involves no other attribute or 
entity.” 

 
For example, the recording of team size, where team size is the count of 
personnel assigned to a given task, is an example of a direct measurement. 

 
• Indirect Measurement. 

 
 “…where we take [Direct Measurements] and combine [calculate] them into a 

quantified item that reflects some attribute whose value we are trying to 
understand.” 

 
For example, the recording of expended effort, where effort is the product of 
utilised personnel and hours expended on a task, is an example of an 
indirect measurement. 

 
• Objective***** Measurement. 

 
 “When measuring attributes, we strive to keep our measurements objective.  

By doing so we make sure that different people produce the same measures, 
regardless of whether they are measuring product, process or resource.” 

 
For example, a measurement of product size, where size is determined 
through a count of the source lines of code, is an example of an objective 
measurement. 

 
• Subjective††††† Management. 

 
 “[Subjective measures] depend on the environment in which they are made.  

The measures can vary with the person measuring, and they reflect the 
judgement of the measurer.  What one judge considers bad, another may 
consider good, and it may be difficult to reach consensus on attributes such 
as process, product or resource quality.” 

 
For example, a measurement of product usability, where usability is 
determined through a number of normalised individual assessments, is an 
example of a subjective measurement. 

 
Based on experience gained through Software Capability Evaluations36 and procurement 
reviews, it is very evident that the collection of metrics within the MOD can be inefficient 
and ineffective.  Often measurements are taken without further analysis or intent for future 
use; instead remaining dormant within project documentation.  Unfortunately, even if the 
will was present, these metrics offer no value to the MOD, as they often capture 
incomplete or irrelevant data sets and do not facilitate the creation of meaningful or valued 

                                                 
***** Objective – “not influenced by personal feelings or opinions in considering or representing facts” 
††††† Subjective – “based or influenced by personal feelings, tastes, or opinions” 
      “The New Oxford Dictionary of English”, Clarendon Press, Oxford, 1998. 

50 



 

outputs.  On further investigation, I have found one root cause that is common to many 
projects, this being the lack of a well defined approach to metrics collection as part of a 
balanced and managed metrics programme; a problem itself resulting from a lack of 
organisational commitment and well defined business goals.  From this work it has 
become clear to the author that metric collection needs to be embraced by the MOD as a 
vehicle for understanding and improvement.  Appropriate business goals need to be 
established and necessary resources committed, as the enabler for all other improvement 
activities.  Guidance also needs to be established on metric program implementation; 
covering the differing types and forms of measurement, and embracing best practice such 
as the attributes listed in Table 1037. 
 
Metric Attribute Attribute Description 
Appropriate Metrics must support the analysis need. 
Clear The intended use of all metrics must be understood and well defined. 
Faithful Metrics must reflect the real situation; they must not be marred by the fact that 

metrics are being taken. 
Accurate Metrics must truly represent the item being measured.  The use of automated tools 

should be considered to reduce errors. 
Consistent Metrics must be repeatable irrespective of the time of measurement or personnel 

making the measurement.  The use of automated tools should be considered to 
improve consistency. 

Controlled The collection burden must be managed; metrics must not be collected at random. 
Sustained The commitment to metric collection must persist for the whole period of analysis 

significance (for some metrics this might be the life of the system).  Metric 
collection commitment, ability and motivation must be established and sustained. 

Traceable To facilitate metric program management and improvement, traceability from 
analysis need to metric collection must be established and sustained. 

 
Table 10 – Metric Attributes 

 
5.5 SUPPORTABILITY INTENT VERIFICATION 
 
The validation of system supportability characteristics can be achieved through a 
supportability demonstration, which is effectively a validation of the User’s performance 
supportability requirements.  For the FOAS project, these requirements have not yet been 
ratified, and until this is carried out their abstraction into objectives is not possible.  When 
these requirements have been accepted, objectives will need to be established at the 
earliest opportunity.  These objectives should address the need to validate that support 
activities can be completed using allocated resources within defined periods of time. 
 
The complete validation of system supportability can only be carried out very late in the 
development lifecycle and will in fact evaluate both product and process characteristics.  
This situation is undesirable as it delays the discovery of any problems until the ability to 
rectify them becomes impracticable or cost prohibitive.  To address this limitation, timely 
verification of software products and processes needs to be carried out. 
 
Early in a project’s lifecycle the availability of measurable outputs is often limited or non-
existent, hence there is no direct way of gaining confidence that supportability is being 
addressed.  Where this is the case, process evaluation can be used to make an 
assessment of supportability intent.  I suggest examples of evidence that might be sought, 
or items that can be measured to gain early supportability confidence are as follows: 
 

51 



 

• Explicit action has been taken to ensure the mutual understanding of 
supportability requirements prior to any contractual commitment. 

 
• Estimates for schedules, resources and cost have been produced.  

Independent reviews of estimates have been carried out for 
comprehensiveness and realism.  Checks are made for actual usage against 
original estimates. 

 
• Effort has been expended, funds have been expended, resources have been 

assigned and training requirements have been identified and satisfied. 
 

• Plans have been produced; progress and milestone achievement is tracked. 
 

• A corrective action system is established; supportability related items have 
been raised and close within the corrective action system. 

 
• Regular reviews of supportability risks, assumptions and analyses are 

carried out. 
 

• A means of incentivising supportability improvement is established. 
 

• A supportability preservation strategy has been established and 
implemented. 

 
These support intent assessment criteria, are again based on the Common Features of the 
Capability Maturity Model28.  For reference purposes definitions of the Common Features, 
named as follows: Commitment to Perform, Ability to Perform, Activities Performed, 
Measurement and Analysis, and Verifying Implementation, are given at Appendix I. 
 
5.6 PRODUCT ASSESSMENT 
 
The timely demonstration of product supportability characteristics is a technically 
challenging discipline.  This is because the goal of developing a supportable system is at a 
significantly higher level of abstraction than the individual items of evidence that will 
contribute towards its achievement.  Even with detailed information on the software 
products involved, the specification of supportability assessment objectives and criteria 
requires a good understanding of the project and specialist technical competencies. 
 
As previously discussed, one approach capable of providing the necessary framework to 
manage the gap between system goals and supporting evidence is the use of a 
supportability case, perhaps utilising Claim-Argument-Evidence or Goal Structured 
Notation (GSN).  Early development of a supportability argument will not only identify the 
individual items of evidence required to justify any supportability claims, but also their roles 
and relationships within that system.  Once the necessary body of evidence has been 
identified, objectives can be placed on these items, such that their timely achievement can 
be managed.  The characteristics identified in Appendix E could provide the initial basis for 
supportability argument formulation, adding extra value to the LSA already carried out for 
the FOAS project.  Once products are in development, it is possible to carry out reviews to 
determine the existence of supportability characteristics.  The AFOTEC - Software 
Maintainability Evaluation Guide38 provides an example of this type of review. 

52 



 

Although on the fringe of software supportability, the system hardware’s ability to 
accommodate expected software growth also needs to be managed.  Demonstration that 
this factor has been addressed can be assisted by the availability of system growth 
analyses and evidence of system design influence.  However the formulation of hardware 
objectives in this area is beyond the scope of this dissertation. 
 
5.7 PROCESS ASSESSMENT 
 
The verification of software support processes is a relatively immature discipline, although 
some work has been carried out to verify operational support characteristics through the 
demonstration of software loading activities.  Generally however, verification does not 
cover the full breadth of support functions as identified in the Support System Model.  
Recognising this failing, I believed that a transposition of mature software testing 
techniques into the supportability domain was necessary to assist with the informed 
establishment of objectives and criteria that are as robust and complete as possible; a 
copy of this work has been included at Appendix J. 
 
Without detailed information on FOAS’s intended support system it is only possible to 
specify areas for which objectives and criteria should be established.  Based on the work 
carried out in Appendix J, objectives and criteria should be established that: 
 

• Define the entry and exit criteria that will control how products will move 
through the support system. 

 
• Promote support function testing for: individual support functions, parts of the 

support system and the support system as a whole (where inputs and 
outputs are unavailable they should be simulated to facilitate early 
assessment). 

 
• Verify the establishment and effectiveness of supportability functions and sub 

functions.  Utilise the CMM Common Features to enable an early 
assessment of supportability intent. 

 
• Test how products will be passed from one support function to another. 

 
• Explore how the system will degrade in the event of extreme circumstances, 

by testing for tolerance of: 
 

- Rates of demand in excess of defined maximums. 
 

- Demands are made beyond the scope of each function. 
 

- Demands are made beyond the capability of each function. 
 
 
 
 
 
 
 

53 



 

SUMMARY 
 
This section has recognised the need to progressively assure the achievement of desired 
system supportability characteristics.  LSA Task 501, which runs in parallel to those 
previously discussed, is a vital element of the LSA process, as it is the foundation on 
which the MOD ensures that software enabled capability can be sustained throughout the 
life of a project. 
 
In terms of corrective action costs, the most effective time to correct faults within a project, 
both product and process related, is during the requirements definition phase.  
Supportability is an emergent property and can only be achieved by designing for 
supportability.  As such, supportability verification and validation, just like any other form of 
testing, needs to be progressively assured from the very outset of the development 
process. 
 
To make visible some of the limitations relating to this subject and assist with their 
management, transposition of testing into the supportability domain is required.  This 
transposition will consider ideas such as:  the effectiveness of early testing, the 
completeness of testing and role of hypotheses, residual risk originating from 
undiscovered faults, and the need to conduct testing in a timely and robust manner. 
 
Unfortunately, the MOD’s own guidance leads many people to believe that LSA Task 501 
can only be undertaken once the system or equipment being procured enters into 
operational use.  This however is not the case and leaving the implementation of this task 
until that time can have a detrimental effect. 
 
Throughout development, confidence in the achievement of supportability characteristics 
can be established and maintained through the use of techniques such as: conformance 
review, conformance demonstration, development monitoring and maturity assessment.  
Each of these techniques exhibit differing strengths and weaknesses which need to be 
considered prior to their inclusion into any supportability assessment strategy. 
 
The management of supportability is not a simple task.  Standards such as SAE-JA-1004 
suggest the use of a software supportability case as a means by which suppliers 
demonstrate that customer supportability requirements have been satisfied.  This idea is 
very similar to the safety case used in the world of safety engineering to assist with the 
establishment and through-life management of system safety integrity.  Further to this, 
tools more traditionally related to the safety domain such as Claim-Argument-Evidence 
and Goal Structured Notation (GSN) could prove equally applicable to supportability 
engineering, and should be considered as a means of presenting and managing a 
supportability case. 
 
Investigation has shown that supportability objectives need to be established that are 
meaningful to those allocated responsibility for their achievement.  Achievement of this 
goal can be assisted through the use of ‘SMART’ characteristics; of which, it is expected 
that measurement will cause the greatest problem.  To assist with the resolution of this 
situation, the MOD needs to improve understanding of the factors associated with 
measurement and provide guidance on the way it expects products and processes to be 
measured and assessed for appropriateness. 
 

54 



 

The complete validation of system supportability can only be carried out very late in the 
development lifecycle.  To address this limitation, timely verification of software products 
and processes needs to be carried out.  Reviewing development products and process for 
evidence of supportability intent can assist with the completion of this task.  Suitable items 
of evidence can be identified through a second transposition of testing into the 
supportability domain. 
 
Because the goal of developing a supportable system is at a significantly higher level of 
abstraction than the individual items of evidence that will contribute towards its 
achievement, the timely demonstration of product supportability characteristics is a 
technically challenging discipline.  Once development begins, it is possible to carry out 
reviews to determine the existence of product supportability characteristics.  The AFOTEC 
- Software Maintainability Evaluation Guide provides an example of this type of review. 
 
Taking reference from the Support System Model and the testing domain, process 
objectives and criteria should be established that:  define entry and exit criteria, promote 
Top Down and Bottom Up testing, assess supportability intent, cover the passage of 
products around the support system, and explore how the system will react in the event of 
extreme circumstances. 
 

55 



 

SECTION 6 
 
DISCUSSION 
 
6.1 REFLECTION 
 
As stated in the project proposal, this dissertation presents a case study with the aim of 
maturing the LSA process by: 
 

• Stating the current failings of Def Stan 00-60, both general and software 
related. 

 
• Defining the nature of software supportability analysis and transposition of 

LSA into the software domain. 
 

• Assessing the practicalities of LSA scope and depth when analysis is carried 
out by an organisation external to a Project Team. 

 
• Evaluating existing guidance on LSA for software and suggesting areas for 

improvement. 
 

• Suggesting new analysis methods that reach beyond the scope of existing 
LSA guidance. 

 
Through the persecution of these aims, which I believe are fully satisfied by the 
dissertation, a large range of topics have been explored for the purpose of initiating 
process maturation.  Within these topics supportability discussions have been developed 
resulting in the identification of some very significant software supportability issues.  
Specific examples of these issues worthy of summarisation include: 
 

• The ability to influence product design and support planning is only possible 
if LSA is carried out in a timely manner.  Unfortunately, the application of 
Software Support Analysis (SSA), as described in Def Stan 00-60, is 
reactive.  This means that the rigid application of Def Stan 00-60 early in the 
CADMID acquisition lifecycle is inappropriate. 

 
• Timely LSA can be carried out by focusing on functional analysis, where 

functional analysis only considers the roles and services that a system is 
required to provide, and specifically does not concern itself with how these 
roles or services will be provided.  In this way all analyses should remain 
valid regardless of eventual system implementation. 

 
• By allowing its software LSA capability to erode, the MOD has placed itself in 

a position of vulnerability through support exploitation.  Should the MOD no 
longer understand the software LSA process, the Integrated Logistics 
Support discipline will become exposed to the risk of failure. 

 
 
 

56 



 

• To facilitate understanding of the support need, projects must recognise the 
potential sources of change and how often might they be encountered.  
Support planning must accommodate the fact that software modification is 
driven by corrective, adaptive, perfective and enhancement changes. 

 
• Within the software domain, product maturity is more closely related to 

obsolescence than stability, as such the need to de-risk projects should be 
satisfied by a method that progressively assures the achievement of 
supportability characteristics. 

 
The dissertation has been influenced by many referenced sources, however one source of 
influence, the Capability Maturity Model (CMM)28, has been of particular use.  I believe that 
the reason behind the CMM’s usefulness is that like LSA it is process based.  As such, 
initiatives in the CMM aimed at improving the software modification processes transpose 
with relative ease into the supportability domain.  In particular, they offer approaches to 
assist with the notably unguided task of supportability test, evaluation and verification (LSA 
Task 501). 
 
Within the dissertation refinement of the Support System Model (see Figure 9) has been a 
key enabler for other LSA activities.  The resultant model and its accompanying 
documentation set has proven itself to be a major factor in establishing completeness and 
correctness of analysis, which has significantly assisted in the production of outputs which 
are informed, justified and traceable. 
 
6.2 CRITIQUE 
 
Throughout the completion of LSA for the FOAS project numerous challenges have been 
received on the usefulness of early and essentially generic analysis outputs, as such these 
challenges are equally valid to this dissertation.  On each occasion these challenges have 
been successfully countered by referral to two basic premises, these being: 
 

• The LSA presented here does not aim to present finalised solutions; instead 
it is the first pass through of an iterative process.  As a first pass, it aims to 
capture the fullest range of factors relating to software support such that over 
time these factors can be explored for their significance and acted upon 
accordingly as a project matures.  The value of this work comes from its 
completeness and not its depth, as omission at this stage could result in 
significant voids in the analysis process, potentially resulting in the 
development on an unacceptable or unaffordable support solution. 

 
• Each of the factors presented within the dissertation is supported by 

academic reference.  This approach is not by accident and has been taken in 
an attempt to establish dissertation pedigree in excess of discipline maturity.  
Whilst it is accepted that the transposition and utilisation of academic outputs 
is not infallible, the ideas presented are based on sound and established 
engineering principles that will always remain valid. 

 
 
 

57 



 

The dissertation structure is complementary to the LSA task framework presented in 
Def Stan 00-60.  This approach results in a document containing many separate but 
interdependent sections.  However, this approach is deemed necessary as it aids read 
across to the Def Stan and improves its usefulness to the LSA practitioner. 
 
On reflection, I believe there is one area of the dissertation that, although academically 
sound, will struggle to prove its worth during application.  This area relates to the 
identification of Software Support Significant Items (SSSI).  My concern is based on the 
fact that the proposed method is reliant upon the definition of support impact and 
probability factors, where definition of these factors is reliant upon an appropriate 
breakdown of system functions and an associated assessment of capability criticality and 
estimated rates of support function usage.  Historically, the MOD has not invested in the 
collection of data that will enable this method and unless there is a radical change in 
culture, project teams will struggle in the completion of this task.  However, if the MOD 
truly wants to develop support systems that satisfy the support need at an acceptable cost, 
this change in culture must occur. 
 
Having met the stated aims of the dissertation proposal, I have reviewed the Motivation 
statement made in Section 1, part of which reads: 
 

“In addition to these stated needs, I believe that [the software LSA guidance work1 
produced by AvSG] needs to be validated as [it] is mainly based on a desktop 
review of LSA related standards and literature.” 

 
In general, I am satisfied that the validation exercise has been carried out within the 
dissertation as a whole but accept that this is not particularly evident to the casual reader 
as this activity has not been completed in an explicit manner.  The reason for this 
approach is that LSA comprises of a generic process, which is then tailored by project 
specific data to fit the characteristics of the system being procured.  As the focus of this 
dissertation is the maturation of the LSA process, it is this theme that has to take 
precedence.  However, project data and support performance issues are not ignored by 
the dissertation even though their relevance to specific LSA tasks is not stated. 
 
During the completion of FOAS LSA, I attended a meeting to determine the support 
analysis that will be undertaken to identify the support requirements for a new mission 
management system.  This system will lie at the heart of ground-based mission planning 
activities both pre and during operational sorties.  During this meeting, the concepts 
considered in this dissertation were presented to a 3rd party Contractor brought in to 
conduct LSA on behalf of the Supplier developing the equipment being procured.  This 
meeting was very successful, with both the 3rd party Contractor and Supplier expressing a 
great deal of interest in my work.  As a direct result of this meeting support analysis 
intentions were refocused to meet the Customer’s need and prevent the expenditure of 
inappropriate LSA effort. 
 
 
 
 
 
 
 

58 



 

6.3 FUTURE WORK 
 
Whilst this dissertation has endeavoured to mature the software LSA process, the matter 
discussed is very much the beginning of this venture and will require application, review 
and update before a robust and proven output is established. 
 
Throughout the dissertation suggestions for future work have been made relating to the 
improvement of LSA.  However, additional suggestions have been made that will generally 
develop the discipline of supportability engineering, in summary these include: 
 

• The relative benefit of software technologies shown in Table 8 lacks 
credibility as it is based on just one assessment method.  Further studies on 
the role of technology within supportability could add great value to this work 
by providing alternative assessment methods and outputs; which could then 
be used to verify results and improve credibility.  I suggest that this could be 
taken forward by consideration of how technologies affect the distribution of 
effort, and relative cost of problem correction, within the maintenance 
lifecycle. 

 
• Supportability is an emergent property dependent upon many interrelated 

factors.  Unfortunately the demonstration of product supportability 
characteristics is a technically challenging discipline as the goal of 
developing a supportable system is at a significantly higher level of 
abstraction than the individual items of evidence that will contribute towards 
its achievement.  Based on the similarities between supportability 
engineering and safety engineering, I suggest that tools more traditionally 
related to the safety engineering such as Claim-Argument-Evidence and 
Goal Structured Notation (GSN) are equally applicable to the supportability 
domain and should be considered as a means of presenting and managing 
system supportability. 

 
• Supportability focused metric collection needs to be embraced by the MOD 

as a vehicle for understanding and improvement.  A metric program needs to 
be established that captures sufficient data to enable the prediction of 
support requirements base on the analysis of comparable systems. 

 
This dissertation has been developed in a military context but its generic supportability 
focus makes it equally applicable to any system requiring through life support.  Accepting 
that the implementation of LSA is an effort consuming process, systems considering its 
application to software should carry out an initial cost benefit analysis to gain an 
understanding of the potential value it will add.  However, systems that are expected to be 
in service for a long period of time could benefit from some form of supportability analysis 
and should review the contents of this dissertation. 
 

59 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

APPENDIX A 
A. Bibliography. 
BIBLIOGRAPHY 
 
1  “Logistics Support Analysis Guidance For Software”, M. Bailey, 2003. 
 
2  “Software Maintenance: Concepts and Practice”, A. Takang, P. Grubb, International 
    Thompson Computer Press, 1996. 
 
3  “Guidelines for Successful Acquisition and Management of Software-Intensive Systems”, 
    www.stsc.hill.af.mil. 
 
4  “Program Evolution”, M. Lehman, Academic Press, London, 1985. 
 
5  “Software-Reliability Engineering: Technology for the 1990s”, J. Musa and W. Everett, 
    from IEEE Software, Vol 7, No 4, pp. 36-43, Nov 1999. 
 
6  “Support for Mission Software in RAF Systems”, AP100D-10, Issue 3, Lft 101, 1998. 
 
7  “Software Maintenance Management”, B. Lientz, E. Swanson, Addison-Wesley, 
    Reading MA, 1980. 
 
8  “Software Maintenance Management : Changes in the Last Decade”, J. Nosek, 
    P. Palvia, Journal of Software Maintenance, Vol. 2, Part 3, pp. 157-174, 1990. 
 
9  “Software Engineering Economics”, B. Boehm, Prentice-Hall, Englewood Cliffs NJ, 1981. 
 
10 “Meeting Customer Requirements”, Software Supportability Program Standard, 
    SAE-JA-1004, 1998. 
 
11 “Guidance for Application - Software Support”, Def Stan 00-60, Part 3, Issue 2, 1998. 
 
12 “Support for Mission Software in RAF Systems”, AP100D-10, Issue 3, 1998. 
 
13 “Application of Integrated Logistic Support”, Def Stan 00–60, Part 0, Section 3, 
    Para 7.1.5, 2000. 
 
14 “Integrated Logistic Support In The Royal Air Force”, AP 100C–70, 2nd Ed, Chap 1, 
    Para 10, 1996. 
 
15 “Guidance for Application - Software Support”, Def Stan 00-60, Part 3, Issue 2, 
    Clause 11, 1998. 
 
16 “Guide to the Application of LSA and LSAR”, Def Stan 00-60, Part 2, Issue 4, Para 7.5, 
    2000. 
 
17 “The Economics of Software Maintenance”, B. Boehm, in R. Arnold, editor, Proceedings, 
    Workshop on Software Maintenance, Silver Spring MD, IEEE Computer Society Press, 
    pp. 9-37, 1983. 
 
18 “Support for Mission Software in RAF Systems”, AP100D-10, Issue 3, Lft 110, 1998. 
 
19 “The Common Software Support Framework”, L Cooper, T Laverick, 
    ES(AIR)(WYT)/SS/(2421/02/0/01)/AD SYS, 2004. 
 
20 “Astor Software and Data Support Requirements”, M Bailey, 
    ES(Air)(WYT)/SS/(2260/01)/AD SYS, 2003. 

A-1 



 

 
21 “Integrated Logistic Support In The Royal Air Force”, AP 100C–70, 2nd Ed, 
    Glossary of Terms, 1996. 
 
22 “Fault Tree Handbook”, Technical Report NUREG-0492, W. Vesely, F. Goldberg, 
    N. Roberts, and D. Haasl, U.S. Nuclear Commission, Washington, D.C., 1981. 
 
23 “Fault Analysis for Systems Engineers”, INCOSE 2003, www.incose.org. 
 
24 “Guidance for Application - Software Support”, Def-Stan 00-60, Part 3, Issue 2, 
    Annex D, 1998. 
 
25 “Managing Software Quality And Business Risk”, M. Ould, Wiley, Chichester, 1999. 
 
26 “Safety Management Requirements for Defence Systems”, Def Stan 00-56, Part 2, 
    Issue 2, 1996. 
 
27 “Logistics Support Analysis for Harrier GR9 / GR9A / TMK12 Software”, D. Gill, 
    ES(Air)(WYT)/SS/(2237/01)/AD SYS, 2004. 
 
28 “The Capability Maturity Model: Guidelines for Improving the Software Process” 
    Software Engineering Institute, Carnegie Mellon University, Harlow: Addison-Wesley, 
    1994. 
 
29 “The JSF System Development and Demonstration Phase Software Presentation”, 
    2002, www.jsf.mil. 
 
30 “Future Offensive Air System Use Study”, Issue 1, 2002. 
 
31 “Software Engineering – A Practitioners Approach”, R. Pressman, 3rd Ed, London: 
    McGraw-Hill, 1992. 
 
32 “MOD ILS Information”, www.ams.dii.r.mil.uk/content/docs/ils/ils_web/lsaf.htm. 
 
33 “Software Supportability Program Standard”, Surface Vehicle / Aerospace Standard, 
    The Engineering Society For Advancing Mobility Land Sea Air and Space, 
    SAE-JA-1004, 1994. 
 
34 “Managing Systems Engineering”, The Open University, T837. 
 
35 “Software Metrics, a Rigorous & Practical Approach”, N. Fenton, S. Pfleeger, London: 
    PWS Publishing Company, 2nd Ed, 1997. 
 
36 “Software Capability Evaluation, Version 3.0, Method Description”, Technical Report 
    CMU/SEI-96-TR-002, P. Byrnes, M. Phillips, 1996, www.sei.cmu.edu. 
 
37 “Software Metrics for Product Assessment”, R. Banche, G. Bazzana, London: 
    McGraw-Hill, 1994. 
 

38 “Software Maintainability Evaluation Guide”, Kirtland AFB, NM: HQ Air Force 
    Operational Test and Evaluation Center (AFOTEC), 1989. 
 
39 “Guidelines for Successful Acquisition and Management of Software-Intensive 
    Systems”, www.stsc.hill.af.mil. 
 
40 “The National Computing Centre, Open Source – The UK Opportunity”, Issue 2, 2002, 
    www.ncc.co.uk. 

A-2 



 

APPENDIX B 
B. Analysis of RAF Change Drivers. 
ANALYSIS OF RAF CHANGE DRIVERS 
 
An initial analysis of software changes experienced by RAF Software Support Teams 
(SST) up-holds the observations made in Section 1.6.  The data used for this analysis was 
obtained from the Eurofighter 2000 (EF2000) International Air Forces Field Team 
(IAFFT)B*.  Unfortunately, the data set does not reflect the latest work carried out by in-
Service SSTs and is limited in sample size to the implementation of 249 changes, as such 
this analysis can only be used to support opinion rather that state fact. 
 
The data collected by the EF2000 IAFFT was gathered for the purpose of identifying 
EF2000 mission support factors, work that is complementary to the intentions of this 
dissertation.  The types of modification used in the EF2000 report closely matched those 
contained within Section 1.6 with the exception of Enhancements, which had been named 
New Requirement. 
 
To accommodate the fact that change types were not consistently categorized across the 
three SSTs supplying change information a normalising process was applied.  It is 
accepted that the normalisation process could be used to influence analysis outputs, but 
for the purpose of this dissertation the benefit of improved comparability is considered to 
outweigh this disadvantage.  The normalisation process was carried through the 
application of two rules to the modification descriptions, as follows: 
 

• Modification Re-categorization and Decomposition.  The re-categorization 
and decomposition of modifications to best capture the amount and type of 
task completed.  This rule allowed for the analysis of single data entries that 
were in fact multiple entries and corrected instances where the work 
descriptions did not match modification categorization. 

 
• Urgent Operational Requirement (UOR) Rework Filtering.  The filtering of 

modifications that were specifically attributable to the correction and 
perfection of functions initially developed under the UOR process.  This rule 
was required to ensure that the rework tasks generated by UOR 
development did not mask statistics relating to the standard development 
process. 

 
HARRIER SOFTWARE MAINTENANCE UNIT (HSMU) 
 
HSMU data consisted of information from 32 modifications.  Normalisation was carried out 
that re-categorized and decomposed the data to best capture the amount and type of 
tasks completed.  The raw and normalised spread of modification types is illustrated in 
Figure B1. 
 
 
 
 
 

                                                 
B* MOD file reference: LC/166836/9/LSS2/WTN dated 26 Jun 96. 

B-1 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Corrective 
34% 

Adaptive 
19% 

Enhancement 
47% 

Perfective 
5% 

Corrective 
24% 

Adaptive 
21% 

Enhancement 
50% 

Raw Data
 

Figure B1 – HSMU Change Data 
 
TORNADO IN-SERVICE MAINTENANCE TEAM (TISMT) 
 
TISMT data consisted of information from 169 modifications.  Normalisation was carried 
out that re-categorized, decomposed and filtered the data to best capture the amount and 
type of tasks completed.  The raw and normalised spread of modification types is 
illustrated in Figure B2.  The normalisation process had a notable effect on the data, which 
was caused by the large proportion of data (137 entries) that captured the correction and 
perfection of functions initially developed under the UOR process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B2 – TISMT Change Data 
 
 
 
 

 Normalised Data 

Corrective 
46% 

Perfective 
42% 

Enhancement 
12% 

Perfective 
9% 

Corrective 
28% 

Enhancement 
63% 

Raw Data Normalised Data 

B-2 



 

TORNADO AIR DEFENCE VARIANT SOFTWARE MAINTENANCE TEAM (ADVSMT) 
 
ADVSMT data consisted of information from 48 modifications.  Normalisation was carried 
out that re-categorized the data to best capture the type of tasks completed.  The raw and 
normalised spread of modification types is illustrated in Figure B3. 
 
 
 Corrective 

19% Perfective 
29% 

Enhancement 
31% 

Perfective 
16% 

Corrective 
18% 

Enhancement 
53% 

Adaptive 
21% 

Adaptive 
13% 

Raw Data

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B3 – ADVSMT Change Data 
 
DATA ANALYSIS LIMITATIONS 
 
The data has a limited analysis capability and is noticeably constrained by the 
unavailability of associated information such as collection period and software change 
request rejection rates.  However, the data does support the suggestion that software 
modifications driven by user enhancements are more common than those driven by the 
need to correct faults. 
 
 
 
 

 Normalised Data 

B-3 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

APPENDIX C 
C. Support Activity Inventory. 
SUPPORT ACTIVITY INVENTORY 
 
Now that the Software Support Model has been defined (see Figure 9), support activity 
decomposition is possible.  The purpose of this decomposition is to provide greater 
visibility of the MOD’s support expectations, facilitate future LSA, and assist initial 
supportability verification work through the creation of a task inventory against which 
reviews can be completed.  It is not however, the intention of functional decomposition to 
impose a support solution or constrain support provider options.  A support activity 
inventory distilled from the Support System Model is given in Tables C1 – C8. 
 

Software Operations Related Processes 
Processes Support Activities 
Software Installation. •  Distribution and recall. 

•  Loading and unloading. 
•  Load verification. 

System Support and 
Recovery. 

•  System failure support (e.g. re-boot, re-load, re-run, re-start). 
•  Product monitoring and review (to identify and report 
    perceived faults and potential needs for corrective change). 
•  Query and problem reporting. 

 
Table C1 – Software Operations Related Processes 

 
Query Evaluation Related Processes 

Processes Support Activities 
Query and Problem 
Answering. 

•  Operational User support. 

Query and Problem Analysis. •  Queries and problem analysis, including: 
    -  Root cause analysis. 
    -  Operational impact and benefit analysis. 
    -  Risk and feasibility analysis. 
    -  Security and Safety impact assessment. 
    -  Reliability impact assessment. 
    -  Supportability impact assessment. 
    -  Cost(s) estimation of solution(s). 
    -  Software Change Request (SCR) generation (as necessary). 

 
Table C2 – Query Evaluation Related Processes 

 
Change Management Related Processes 

Processes Support Activities 
Change Authorization. •  Software change trade-off assessment, including consideration of: 

    -  Major hardware upgrades. 
    -  Hardware obsolescence issues. 
    -  System goals, constraints and strategies. 
    -  Available resources. 
    -  System interoperability. 
•  SCR authorisation or rejection. 

 
Table C3 – Change Management Related Processes 

 
 
 

C-1 



 

Software Modification Related Processes 
Processes Support Activities 
Requirements Capture and 
Management. 

•  All processes required to capture traceable modification 
    requirements, (functional and non-functional) including: 
    -  Preparation of associated documentation. 
    -  Preparation of requirement tests and criteria for testing. 

Requirements Specification 
and Management. 

•  All processes required to specify traceable modification 
    requirements, including: 
    -  Preparation of associated documentation. 
    -  Preparation of specification tests and criteria for testing. 

Design Modification. •  All processes required to amend the software design in order to 
    implement a software modification, including: 
    -  Preparation of associated documentation. 
    -  Preparation of design tests and criteria for testing. 

Product Modification. •  All processes required to implement a product modification, 
    including: 
    -  Preparation of associated documentation. 
    -  Preparation of product tests and criteria for testing. 

Integration and Testing. •  All processes required to integrate, verify and validate the modified 
    products, including: 
    -  Unit integration. 
    -  Module integration. 
    -  Unit testing. 
    -  Integration testing. 
    -  Regression testing. 
    -  System testing. 
    -  Acceptance testing. 

 
Table C4 – Software Modification Related Processes 

 
Integrity Assurance Related Processes 

Processes Support Activities 
Product Release. •  Product release readiness assessment (fit for purpose). 

•  Product migration. 
 

Table C5 – Integrity Assurance Related Processes 
 

Data Support Related Processes 
Processes Support Activities 
Data Availability. •  Formulation and provision of mission related data loads. 

•  Formulation and provision of engineering related data loads. 
 

Table C6 – Data Support Related Processes 
 

Customer and Supplier Related Processes 
Processes Support Activities 
Contracting. •  Tender proposal and assessment. 

•  Contract monitoring, review and update. 
Communication and 
Interfacing. 

•  User training. 
•  Product acceptance. 

 
Table C7 – Customer and Supplier Related Processes 

 
 
 
 

C-2 



 

Omnipresent Lifecycle Processes 
Processes Support Activities 
Product and Service 
Acquisition. 

•  Data utilisation monitoring. 
•  Sub-team, and sub-contractor utilisation management. 

Configuration Management. •  Control and management of versions and variants. 
•  Identification and safekeeping. 
•  Replication and replication verification. 
•  Disaster recovery. 
•  Disposal. 

Personnel Management. •  Team management, including: 
    -  Training. 
    -  Personnel review and appraisal. 
    -  Administration. 

Project Management. •  Modification capability management, including: 
    -  Skills provision and sustainment. 
    -  Facilities provision and sustainment. 
    -  Tools and rigs provision and sustainment. 
•  Project tracking and oversight. 
•  Project communication and feedback. 
•  Project estimation and planning. 
•  Responsibility negotiation, allocation and acceptance. 
•  Project debriefing (lessons learnt). 

Quality Management. •  Quality policy management. 
•  Quality planning. 
•  Quality achievement, including: 
    -  Standard suitability assessment (both international and local). 
    -  Method suitability assessment. 
•  Quality control, including: 
    -  Ensuring compliance and consistency to standards. 
    -  Ensuring compliance and consistency to higher-level products 
       and requirements. 
•  Quality preservation, including: 
    -  Ensuring product traceability and consistency (products match 
       their descriptions). 
    -  Functional and non-functional characteristic maintenance (see 
       query evaluation). 
•  Audit. 
•  Review, including: 
    -  Project reviews. 
    -  Technical reviews. 

Documentation Management. •  Standards review and amendment (international standards for 
    appropriateness, local standards for appropriateness and 
    correctness). 
•  Records covering production and maintenance, including: 
    -  Audits. 
    -  Reviews. 
    -  Work products. 
    -  Task analyses and Terms of Reference (ToR). 
    -  Training records. 

Process Improvement. 
 

•  Process and product measurement. 
•  Measurement analysis. 
•  Improvement initiatives. 

 
Table C8 – Omnipresent Lifecycle Processes 

 
 
 

C-3 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 

 



 

APPENDIX D 
D. Qualitative Support Option Assessment. 
QUALITATIVE SUPPORT OPTION ASSESSMENT 
 
The ability to support system software will be influenced by the supportability 
characteristics of the system’s products and processes.  Given a set of Software Support 
Significant Items (SSSIs), and an understanding of the characteristics that influence 
supportability (see Appendix E), alternative support systems can be assessed.  Support 
provider selection should be based on an organisation’s ability to provide both 
effectiveness and efficiency.  By considering the relative strengths and weaknesses of 
potential support options an early qualitative assessment can be made. 
 
For example purposes an OFP qualitative support assessment, reflective of current 
support capabilities, is given in Tables D1 – D6.  For definitions of the potential support 
options refer to Section 4.3.  Within Tables D1 – D6, relative advantages and 
disadvantages have been attributed to functional areas within the Support System Model 
(see Figure 9) and are identified by the following abbreviations: 
 
 • All functions (All). 
 

• Software Modification (SM). 
 
 • Software Operations (SO). 
 
 • Change Management (CM).  
 
 • Query Evaluation (QE). 
 
 • Integrity Assurance (IA). 
 
 • Data Support (DS). 
 
 • Not Attributable (NA). 
 

Industry Original Equipment Manufacturer (OEM) 
Relative Advantages Relative Disadvantages 

Experienced in managing both large and 
small scaled projects. SM Product support is dependent upon economic 

viability. All 

Experienced in managing subcontractors. 
SM

Placing all support responsibility with one 
provider increases the risk of customer 
exploitation. 

All 

Well positioned to exploit technology to 
overcome obsolescence and improve 
supportability. 

SM
Equipment users and requirements analysts 
exist in diversely different organisations. SM

Experienced in implementing modifications 
across the full extent of complexity, size and 
scope. 

SM
Sustainment of the Software Development 
Environment (SDE) is only possible if 
economically viable. 

SM

Often the IPR holder of bespoke system 
software. SM Sustainment of required skills is only possible 

if economically viable. SM

Transition of concepts, documentation and 
working practices from development to 
support should be easy. 

SM
Urgent Operational Requirements (UOR) 
responsiveness is hampered by the need for 
contracting. 

SM

D-1 



 

Industry Original Equipment Manufacturer (OEM) 
Relative Advantages Relative Disadvantages 

Placing support responsibility with industry 
removes the Service’s burden to establish and 
sustain the SDE. SM

During periods of surge capacity support 
flexibility will be dependent upon the ability to 
reallocate resources, this will only be possible 
if economically viable. 

SM

Placing support responsibility with industry 
removes the Service’s burden to establish and 
sustain the required competencies. 

SM
It may not be appropriate or possible for 
industry to carry out some 1st line functions, 
especially when equipment is deployed. 

SO 

Having a single provider of support will assist 
with the integration of software changes. SM Meeting the customer’s operational needs will 

not always complement the business needs. CM

Experienced in quality and configuration 
management at a systems level. SM 

IA 

Equipment users cannot discuss their 
problems and queries with Service personnel 
that appreciate the operational environment. 

QE 

Competent in safety, security and systems 
engineering disciplines. SM 

IA 

Independency between the OEM and Integrity 
Assurance organisation will be harder to 
define and establish. 

IA 

Experienced in both the system as a whole 
and individual functional areas. 

SM 
IA 

  

Change management is assisted as there is 
only one organisation implementing changes. CM   

 
Table D1 – Industry OEM Support Option Advantages and Disadvantages 

 
 
 

Industry 3rd Party 
Relative Advantages Relative Disadvantages 

Experienced in managing both large and 
small scaled projects. SM Product support is dependent upon economic 

viability. All 

Experienced in managing subcontractors. 
SM

Placing all support responsibility with one 
provider increases the risk of customer 
exploitation. 

All 

Experienced in implementing modifications 
across the full extent of complexity, size and 
scope. 

SM
Transition of concepts, documentation and 
working practices from development to 
support may be problematic. 

SM

Well positioned to exploit technology to 
overcome obsolescence and improve 
supportability. 

SM
Authority or the IPR itself will need to be 
acquired in order to implement modifications. SM

Placing support responsibility with industry 
removes the Service’s burden to establish and 
sustain the SDE. 

SM
Equipment users and requirements analysts 
exist in diversely different organisations. SM

Placing support responsibility with industry 
removes the Service’s burden to establish and 
sustain the required competencies. 

SM
Sustainment of the Software Development 
Environment (SDE) is only possible if 
economically viable. 

SM

Having a single provider of support will assist 
with the integration of software changes. SM Sustainment of required skills is only possible 

if economically viable. SM

Competent in safety, security and systems 
engineering disciplines. SM 

IA 

Urgent Operational Requirements (UOR) 
responsiveness is hampered by the need for 
contracting. 

SM

Experienced in quality and configuration 
management at a systems level. SM 

IA 

During periods of surge capacity support 
flexibility will be dependent upon the ability to 
reallocate resources, this will only be possible 
if economically viable. 

SM

Independency between the OEM and Integrity 
Assurance organisation will be easier to 
define and establish. 

IA 
It will be hard for the support organisation to 
gain experience in both the system as a whole 
and individual functional areas. 

SM 
IA 

D-2 



 

Industry 3rd Party 
Relative Advantages Relative Disadvantages 

Change management is assisted as there is 
only one organisation implementing changes. CM

It may not be appropriate or possible for 
industry to carry out some 1st line functions, 
especially when equipment is deployed. 

SO 

  Meeting the customer’s operational needs will 
not always complement the business needs. CM

 
 

Equipment users cannot discuss their 
problems and queries with Service personnel 
that appreciate the operational environment. 

QE 

 
Table D2 – Industry 3rd Party Support Option Advantages and Disadvantages 

 
 
 

Service 
Relative Advantages Relative Disadvantages 

No risk of customer exploitation. 
All 

Transition of concepts, documentation and 
working practices from development to 
support may be problematic. 

SM

Maintains the Service’s ‘Intelligent Customer’ 
role. All Authority or the IPR itself will need to be 

acquired in order to implement modifications. SM

Resources can be reallocated as required to 
satisfy UORs. SM

Major capital investment will be required by 
the MOD to attain necessary skills and 
infrastructure. 

SM

Work can be completed without the need for 
contracting. SM The cost of skills provision and sustainment is 

owned by the MOD. SM

Equipment users and requirements analysts 
exist in the same organisation. SM The cost of SDE provision and sustainment is 

owned by the MOD. SM

Having a single provider of support will assist 
with the integration of software changes. SM No experience in the management of large 

scaled projects. SM

The tasking organisation has relative freedom 
to negotiate the level of testing in order to 
meet operational need. 

SM
Inexperienced in the management of 
subcontractors. SM

Change management is assisted as there is 
only one organisation implementing changes. CM

Badly positioned to exploit technology to 
overcome obsolescence and improve 
supportability. 

SM

Meeting the customer’s operational needs is 
the support organisations core business. CM

Inexperienced in implementing modifications 
across the full extent of complexity, size and 
scope. 

SM

Equipment users can discuss their problems 
and queries with Service personnel that 
appreciate the operational environment. 

QE 
The release of software will be dependent 
upon the MOD’s ability to attain product 
certification. 

SM

Well experienced in carrying out Front Line 
software tasks. SO Inexperienced in the disciplines of safety, 

security and systems engineering. 
SM 
IA 

Independency between the OEM and Integrity 
Assurance organisation will be easier to 
define and establish. 

IA 
Inexperienced in quality and configuration 
management at a systems level. SM 

IA 

 
 

It will be hard for the support organisation to 
gain experience in both the system as a whole 
and individual functional areas. 

SM 
IA 

  Against current MOD policy (Provider to 
Decider). NA 

 
Table D3 – Service Support Option Advantages and Disadvantages 

 
 

D-3 



 

Diverse 
Relative Advantages Relative Disadvantages 

Reduced risk of customer exploitation through 
partial sustainment of an organic support 
capability. 

All 
Some exposure to business related factors 
would still exist. All 

Helps to maintain the Service’s ‘Intelligent 
Customer’ role. All Communication is made more complex as 

there are multiple support organisations. All 

Industry is experienced in managing both 
large and small-scaled projects. SM

Problems in the transition of concepts, 
documentation and working practices from 
development to support might still exist. 

SM

Industry is experienced in managing 
subcontractors. SM The integration of modifications into the 

software baseline will become more complex. SM

Industry is well positioned to exploit 
technology to overcome obsolescence and 
improve supportability. 

SM
The potential for integration induced function 
regression (‘Saw Tooth Effect’) is created. SM

Industry is experienced in implementing 
modifications across the full extent of 
complexity, size and scope. 

SM
Inefficiency is introduced through OEM rework 
of modifications to gain certification. SM

IPR is easier to secure as the OEM is 
involved. SM

Independency between the OEM and Integrity 
Assurance organisation will be harder to 
define and establish. 

IA 

Service resources can be reallocated as 
required to satisfy UORs. SM

It may not be appropriate or possible for 
industry to carry out some 1st line functions, 
especially when equipment is deployed. 

SO 

Service allocated tasks can be completed 
without the need for contracting. SM Change management is made more complex 

as there are multiple support organisations. CM

Equipment users and requirements analysts 
exist in the same organisation. SM   

Placing support responsibility with industry 
reduces the Service’s burden to establish and 
sustain the SDE. 

SM
 

 

Placing support responsibility with industry 
reduces the Service’s burden to establish and 
sustain the required competencies. 

SM
 

 

Industry is experienced in quality and 
configuration management at a systems level. 

SM 
IA 

  

Industry is competent in safety, security and 
systems engineering disciplines. 

SM 
IA 

  

Industry is experienced in both the system as 
a whole and individual functional areas. 

SM 
IA 

  

Meeting the customer’s operational needs is 
the Service’s core business. CM   

Service personnel are well experienced in 
carrying out Front Line software tasks. SO   

Equipment users can discuss their problems 
and queries with Service personnel that 
appreciate the operational environment. 

QE 
 

 

 
Table D4 – Diverse Support Option Advantages and Disadvantages 

 
 
 
 
 
 
 
 

D-4 



 

Partnered 
Relative Advantages Relative Disadvantages 

Reduced risk of customer exploitation through 
partial sustainment of an organic support 
capability. 

All 
Some exposure to business related factors 
would still exist. All 

Helps to maintain the Service’s ‘Intelligent 
Customer’ role. All The support option is new and immature; as 

such it will attract an increased level of risk. All 

Industry is experienced in managing both 
large and small-scaled projects. SM

Specific management issues will exist relating 
to balancing the needs of industrial and 
Service personnel (i.e. career management, 
cultural expectations). 

SM

Industry is experienced in managing 
subcontractors. SM

Independency between the OEM and Integrity 
Assurance organisation will be harder to 
define and establish. 

IA 

Industry is well positioned to exploit 
technology to overcome obsolescence and 
improve supportability. 

SM
It may not be appropriate or possible for 
industry to carry out some 1st line functions, 
especially when equipment is deployed. 

SO 

Industry is experienced in implementing 
modifications across the full extent of 
complexity, size and scope. 

SM
 

 

IPR is easier to secure as the OEM is 
involved. SM   

Dedicated Service resources are available to 
satisfy UORs. SM   

Tasks can be completed by Service personnel 
without the need for contracting. SM   

Equipment users and requirements analysts 
exist in the same organisation. SM   

Transition of concepts, documentation and 
working practices from development to 
support should be easy. 

SM
 

 

Placing support responsibility with industry 
reduces the Service’s burden to establish and 
sustain the SDE. 

SM
 

 

Placing support responsibility with industry 
reduces the Service’s burden to establish and 
sustain the required competencies. 

SM
 

 

Having a partnered support solution will assist 
with the integration of software changes. SM   

Certification and release related rework is 
minimised through close integration of OEM 
and other support providers. 

SM
 

 

Industry is experienced in quality and 
configuration management at a systems level. 

SM 
IA 

  

Industry is competent in safety, security and 
systems engineering disciplines. 

SM 
IA 

  

Industry is experienced in both the system as 
a whole and individual functional areas. 

SM 
IA 

  

Service personnel are well experienced in 
carrying out Front Line software tasks. SO   

Meeting the customer’s operational needs is 
the Service’s core business. CM   

Having a partnered support solution will assist 
with the management of change. CM   

Equipment users can discuss their problems 
and queries with personnel that appreciate the 
operational environment. 

QE 
 

 

 
Table D5 – Partnered Support Option Advantages and Disadvantages 

D-5 



 

No Support 
Relative Advantages Relative Disadvantages 

No additional costs once development is 
finished. 

All 

Only applicable to the most insignificant 
software.  Exposes the customer to the risk of 
capability loss if at some time modification is 
required but not possible. Without support the 
investment place in developing or procuring 
software is unprotected from obsolescence. 

All 

 
Table D6 – No Support Advantages and Disadvantages 

 
With the assessment now complete, the selection of the most appropriate support option is 
possible.  This selection process is not clear-cut, as there will always be trade-offs that 
cannot be balanced.  At this qualitative stage of work, the selection process is based on 
the relative strengths and weaknesses of each support organisation, the needs of each 
function within the Support System Model and the requirements of Customers 1 and 2 
(see Table 4) 
 
The qualitative assessment of support options by nature will be a subjective task.  To 
reduce the variance of this subjectivity, assessments need to be made against a set of 
defined criteria.  These criteria must have an operation focus whilst balancing constraints 
relating to support feasibility, as such the following criteria are suggested. 
 

• Favourable.  Selection of this option: 
 

- Will fully satisfy all of the requirements of Customers 1 and 2. 
 
  - Will fully satisfy the support task requirements. 
 

- Has support organisation advantages that beneficially outweigh their 
disadvantages. 

 
- Can accommodate the implications of SSSI product characteristics. 

 
 • Viable.  Selection of this option: 
 
  - Will fully satisfy all of the requirements of Customers 1 and 2. 
 
  - Will fully satisfy the support task requirements. 
 

- Has acceptable support organisation advantages and disadvantages. 
 
- Can accommodate the implications of SSSI product characteristics. 
 

 • Unviable.  Selection of this option either: 
 

- Will not satisfy one or more of the requirements of Customers 1 and 2. 
 
- Will not satisfy the support task requirements. 
 

D-6 



 

- Cannot accommodate the implications of SSSI product 
characteristics. 

 
• Not Assessed (NA).  Insufficient data or analysis is available at this time to 

make an informed judgement. 
 
An example qualitative assessment has been made for support of an Operational Flight 
Program.  The assessment, given at Table D7, is reflective of current support capabilities, 
does not consider SSSI product characteristics and has no reference to support costs. 
 
 Support Option 

Support 
Tasks 

Industry 
OEM 

Industry 3rd 
Party Service Diverse Partnered No Support 

Software 
Operations UnviableD*

  UnviableD* Favourable Viable Viable UnviableD‡

Query 
Evaluation Viable Viable Favourable Viable Viable UnviableD‡ 

Change 
Management UnviableD†

 UnviableD† Favourable Viable Favourable UnviableD‡ 

Software 
ModificationD§

 

Viable UnviableD* UnviableD* Viable Viable UnviableD‡ 

Integrity 
AssuranceD**

 

Viable Viable UnviableD* Viable Viable UnviableD‡ 

Data 
Support 

Not 
AssessedD‡‡

 

Not 
AssessedD‡‡ 

Not 
AssessedD‡‡ 

Not 
AssessedD‡‡ 

Not 
AssessedD‡‡ UnviableD‡ 

 
Table D7 – OFP Qualitative Support Option Selection 

 
 
 

                                                 
D*   Unviable on the grounds that the support provider cannot fully provide the necessary support function. 
D‡   Unviable on the grounds that, based on empirical evidence, the support function will be required. 
D†   Unviable on the grounds that Customers 1 & 2 need to be involved in the function. 
D§   A favourable option has not been identified as the real benefits of a Partnered approach are as yet 
      untested due to option immaturity. 
D**  A favourable option has not been identified as the required level of independency from the OEM is at 
      present unknown. 
D‡‡ Insufficient data analysis carried out. 

D-7 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 
 
 
 
 
 
 
 
 

 



 

APPENDIX E 
E. Supportability Characteristics. 
SUPPORTABILITY CHARACTERISTICS 
 
General, though not exhaustive, product and process characteristics that influence 
supportability are documented in Tables E1 and E2.  These characteristics have been 
identified through consideration of the Support System Model (see Figure 9), Capability 
Maturity Model28, systems engineering principles and previous LSA reports. 
 

Product Characteristics 
Characteristic Description 

Architecture System architecture should be influenced by the need for ease of change. 
Requirements The requirements should be: understandable, complete, unambiguous, consistent, 

organised, compliant to standards and traceable, such that the impact of change can be 
assessed and managed. 

Design The design should be: 
•  Understandable - traceable from the requirements. 
•  Logical - following the structure of the system. 
•  Robust - degrade gently in the presence of faults. 
•  Modifiable - isolating likely areas of change to reduce the impact of change. 

Complexity The design should balance the needs of low coupling and high cohesion. 
Code / Language The implementation should represent the design.  The choice of language should 

balance the following needs: 
•  Technical application. 
•  Clarity of source code. 
•  Maintainability, reliability and portability. 

Test Adequate test cases should be established, implemented and maintained to 
demonstrate that product build quality and requirement satisfaction is acceptable. 

Safety Risk 
Classification 

Safety Related Software (SRS) will require specific attention regards its modification 
and subsequent certification and release.  Where possible SRS should be isolated from 
expected areas of change. 

Security Risk 
Classification 

Software identified as security related will require specific attention regards its 
modification and subsequent accreditation.  Where possible security related software 
should be isolated from expected areas of change. 

Conformance to 
Standards 

The appropriate application of standards can improve product quality; the use of Open 
Standards is particularly desirable as they promote interoperability via the 
standardisation of interfaces and protocols. 

Documentation In addition to the requirements characteristics (understandable, complete, 
unambiguous, consistent, organised, compliant to standards and traceable); 
documentation should be appropriate (for both current and future use), in that it should 
be sufficient to convey the necessary information, be up to date, and in a format most 
appropriate to the task. 

Obsolescence 
Status 

Obsolescence is tightly coupled to the environment and equipment in which the product 
is developed and operates; as such software product obsolescence is best explored by 
considering software process obsolescence.  The only way that the software product 
can become obsolete is through gradual, maintenance induced, degradation.  When a 
need for change occurs and modification is no longer possible, product obsolescence 
has occurred. 

Appropriate use of 
New and Evolving 
Technologies 

Technology utilisation must balance the need to meet both functional and non-
functional characteristics.  Evidence should be established demonstrating the 
supportability benefit of utilised software technologies. 

 
Table E1 – Product Characteristics 

 
 
 

E-1 



 

Process Characteristics 
Characteristic Description 

Requirements 
Management 

Change is inevitable, this must be appreciated and managed such that capability can 
be sustained and enhanced, and the development investment protected. 

Project 
Management 

The timely achievement of milestones will directly affect both the equipment and the 
capability users.  As such modification needs to be both planned and managed in order 
to generate meaningful milestones and estimates. 

Subcontractor 
Management 

Where support activities are allocated to other organisations or subcontractors, the 
prime support organisation should demonstrate that they have adequate measures in 
place to ensure products are delivered on time, to specification and within budget. 

Configuration 
Management 

Once product quality has been achieved it needs to be preserved.  Identification, 
Change and Configuration Management are activities that assist quality preservation. 

Quality 
Management 

As well as the initial achievement of product quality, the support organisation needs to 
demonstrate how quality will be sustained throughout the life of the system. 

Change 
Management 

Change must be balanced against the capability need, available resources, given 
constraints and User abilities. 

Obsolescence 
Management 

The rapid speed of technology change within information systems demands a robust 
approach to obsolescence management.  Technology should be exploited to offer the 
best balance between product performance and lifetime supportability. 

Software 
Development 
Environment 
(SDE) Provision 
and Sustainment 

The creation of software products is heavily dependent upon the SDE.  As such the 
SDE itself needs to be managed so that the ability to implement modifications is not 
lost.  Specific issues relating to the SDE include: 
•  Rigs must be of adequate fidelity (utilise or accurately emulate aircraft standard 
    spares), enabling testing appropriate to the need. 
•  Software development tools need to be licensed and obsolescence managed for the 
    life of dependent software products. 
•  Facilities should be provided that enhance productivity by balancing the needs of 
    individuals and the support organisation. 

Skills Provision 
and Sustainment 

•  Software Change: 
    -  The ability to assess, manage, modify and release software is an intellectual 
        process, as such it is highly dependent upon the skill of individuals that perform 
        these functions. These skills must be managed for the expected period of software 
        maintenance. 
•  Software Fielding: 
    -  Tasks carried out during software operations are of a procedural nature.  Some  
        overhead will be required to train individuals to perform these tasks, but this 
        should not be significant.  To accommodate the Service rotation of personnel the 
        skills required to perform these tasks should be kept to a minimum. 

Competency Specific skills issues exist in the domains of safety, security and systems engineering, 
in that they require increased competency levels.  Specific attention should be given to 
the provision and sustainment of these skills.  

Scalability Individual modifications will vary in their complexity and size and scope.  The support 
solution must be capable of accommodating the full extent of all modifications. 

User Support As well as the need to modify products, Users require a support service capable of 
answering any queries or problems that arise in a timely manner. 

Intellectual 
Property Rights 
(IPR) 

Having the ability to make change is irrelevant if it is not accompanied with the legal 
right to do so.  IPR must be acquired and sustained for areas likely to experience the 
need for modification.  Once a product is modified, IPR also needs to be considered for 
the modification itself. 

Organisational 
Support Focus 

The development and support organisations need to have a whole life approach; their 
products must be created and modified with supportability in mind.  The ethos of 
support must be congruent with the business goals and capability needs.  When 
necessary, the ‘can do’ attitude must prevail in order to meet operational need. 

 
 
 
 
 

E-2 



 

Process Characteristics 
Characteristic Description 

Organisational 
Dependency 

Dependencies exist for both the Customer and Supplier; the Customer can become 
totally dependent on the Supplier if no other supply option is available or the Supplier 
can become totally dependent upon the Customer if they have only one purchaser of 
their services.  From this it is evident that there needs to be a balanced Customer – 
Supplier relationship.  The Customer needs to provide enough business to ensure the 
Supplier remains healthy, whereas the Supplier needs to reliably deliver an agreed 
level of service.  To enable the relationship balance, the Customer must be able to 
determine and validate their support requirements. 

Organisational 
Structure and 
Communication 

The support organisation needs to manage the needs of the system as well as the 
individual functions, as such, the organisation needs to be both Project and Functionally 
oriented.  Good communication must be established across functional areas and 
between project layers. 

Change 
Integration 

Software products should continually improve and mature.  The integration of changes 
should be managed such that function regression (sometimes referred to as the ‘Saw 
Tooth Effect’) does not occur. 

Change Release The process of releasing changes to service should not impact on operational 
capability.  Release processes should be established that are both commensurate with 
the operational need and reduce the need for rework to a minimum. 

Holistic Approach Software needs to be recognised as part of the system, as such the development and 
support organisations need to have a holistic ‘systems’ approach that balances the 
needs of hardware and software support. 

Support Maturity It is highly unlikely that support arrangements will be optimal from the outset; as such a 
means of incentivising, maturing and improving support should be established. 

Responsiveness Individual changes will have an associated priority level.  The support organisation 
needs to be able to service high priority changes in a timely manner, reallocating 
resources as necessary to provide the required level of support flexibility. 

Operational 
Location 

Where the Software Host resides at distributed locations, the activity of software 
distribution and recall needs to be assessed for its impact on availability.  Appropriate 
measures need to be implemented to ensure product distribution and recall does not 
impact on capability availability. 

Human Factors In addition to the provision of adequate training, individual and team needs also need to 
be satisfied.  Therefore, the support organisation needs to provide a working 
environment and regime that accommodates rest, recuperation and cultural 
expectations (this is particularly relevant where mixed civilian and Service teams are 
established). 

 
Table E2 – Process Characteristics 

 
 
 
 

E-3 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

APPENDIX F 
F. Technology Demonstrator Programme Summary. 
TECHNOLOGY DEMONSTRATOR PROGRAMME SUMMARY 
 
The TDP sequence of events is illustrated in Figure F1. 
 
 

Analysis of  
operational requirements 

Generate User requirements 

Brainstorm technologies for 
requirements impact 

Prioritise Requirements by: 
 

    •  Technology Readiness 
        Level. 
    •  Risk. 
    •  Benefit. 

Group related requirements 
 into a TDP 

Place TDP out to tender 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F1 – TDP Sequence of Events 
 
 
 
 

F-1 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 
 
 
 
 
 
 

 



 

APPENDIX G 
G. Supportability Related Technologies. 
SUPPORTABILITY RELATED TECHNOLOGIES 
 
Potential software technological opportunities are identified within Table G1. 
 

Technological Opportunity Support Context Potential Supportability Benefit 

Redefinition and refinement of the 
support infrastructure and 
processes. 

An opportunity exists to reduce 
the cycle time between 
requirement identification and the 
release of software modifications 

Reduction in the time taken to 
release modifications through 
improved working practices. 

Appropriate adoption and 
application of standards for 
development and support. 

Inappropriate standards are often 
mandated within projects such 
that no value is added to the 
quality of outputs. 

Appropriately standardised 
software products will improve 
understandability and 
supportability. 

Adoption of a Process 
Improvement initiative. 

Process Improvement endeavours 
to ensure that the product is not 
only built correctly but 
appropriately to the business 
needs.  Process Improvement is 
continual. 

Better quality of final product, 
reduced risk of process failure and 
continual improvement.  There is 
anecdotal evidence that mature 
organisations also benefit from 
reduced manpower turnover. 

Organisationally defined and 
standardised utilisation of 
Computer Aided Software 
Engineering (CASE) tools. 

CASE tool utilisation is the only 
realistic approach for many 
engineering activities across 
product development and support.  
These tools however must support 
the organisation’s supportability 
needs. 

Organisationally defined and 
standardised tools will assist with 
the management of personnel 
skills and training.  Improved 
flexibility and responsiveness can 
be achieved once a defined set of 
skills has been established. 

Organisationally defined and 
standardised software 
management tools. 

The complexity of modern 
avionics makes the achievement 
and preservation of non-functional 
characteristic almost impossible 
without the assistance specialist 
management tools covering such 
disciplines as: 
•  Requirements management. 
•  Configuration management. 
•  Safety management. 
•  Supportability management. 

Organisationally defined and 
standardised tools will assist with 
the management of personnel 
skills and training.  Improved 
supportability can be achieved 
through the use of tools that assist 
in the management of system 
non-functional characteristics.  
Software release times can be 
reduced through the improved 
management of integrity 
assurance. 

Organisationally defined and 
standardised Software 
Engineering Environment (SEE) 
such as: 
•  Languages. 
•  Methodologies. 
•  Rigs and simulators. 

Standardisation of the SEE will be 
complementary to the utilisation of 
CASE tools.  The SEE however 
must support the organisation’s 
supportability needs. 

Organisationally defined and 
standardised SEE will assist with 
the management of personnel 
skills and training.  Improved 
support flexibility and 
responsiveness can be achieved 
once a defined set of skills and 
engineering infrastructure has 
been established. 

 
 
 
 
 
 

G-1 



 

Technological Opportunity Support Context Potential Supportability Benefit 

Adoption of a standardised 
approach to data formatting and 
loading. 

Software Operations Support 
(SOS) comprises of two different 
activities: Software and data 
loading, and pre-mission data 
formulation.  Both areas offer 
opportunities for supportability 
improvement if data loading 
operations and mission data 
formats are standardised across 
platforms. 

Whilst the effort required for 
mission data formulation is at 
present unknown, it is evident that 
this process consumes a 
significant amount of effort.  This 
effort appears to be much larger 
than that expended on data and 
software loading activities.  
Standardised mission data 
formats and loading mechanisms 
can improve supportability and 
interoperability by reducing rework 
and loading effort. 

Application of Object Orientation 
(OO). 

Some platform functions will be 
susceptible to modifications 
originating from the frequent need 
to improve Human Computer 
Interfaces (HCI).  In addition to 
this, understandability is related to 
the modularisation of software 
functions39. 

OO techniques have the potential 
to improve supportability through 
the separation of computational 
and operational data from 
interface calls.  OO encourages 
the modularisation, and hence 
understandability, of software 
products. 

Exploitation of automatic code 
generation. 

Most of the needs for supportable 
software are generated by the 
assumption that software needs to 
be developed and supported to 
enable capability sustainment.  A 
challenge to this assumption 
comes from the potential ability to 
automatically generate software 
(where the level of automation 
defines the residual dependency 
on support activities). 

The ability to automatically 
produce integrity assured software 
would revolutionise capability 
sustainment.  Software coding will 
no longer exist; it will just be 
generated as required.  Where 
automation is on a smaller scale 
the potential benefits of this 
technology will be reduced. 
Note: Software implementation is 
only one activity in the 
development lifecycle.  Effort 
intensive disciplines such as 
requirement definition and 
specification will still be required 
(see Figure 3). 

Utilisation of reuse, multiuse and 
Commercial Off The Shelf (COTS) 
software. 

The Joint Strike Fighter project 
advocates the maximisation of 
reuse, multiuse and COTS 
software29.  The utilisation of 
reuse, multiuse and COTS is 
based on the assumption that it is 
more economic to exploit existing 
products rather than develop new 
ones. 

“Where the reuse, multiuse or 
COTS product meets, without 
modification, the system 
development and support 
requirements it will almost always 
cost less to acquire than the 
development of equivalent 
software”31. 

 

G-2 



 

 
Technological Opportunity Support Context Potential Supportability Benefit 

Utilisation of Open Standards. 
“The term open has spread 
beyond the world of software 
development and is diluting the 
original meaning of the term. It 
now commonly refers to the 
general application of a distributed 
collaborative development method 
and/or free participation in 
production and access to product 
in any sphere of activity”.40

The utilisation of open standards 
will assist with the modularisation 
of systems by providing a 
consistent and readily accessible 
definition of interface standards.  
In conjunction with a 
complementary architecture, once 
the interfaces between modules 
are standardised software 
modifications should be easier to 
implement through improved 
abstraction, encapsulation and 
information hiding. 

Reduced occurrence and impact 
of software modifications driven by 
adaptive program interface 
changes.  Improved supportability 
through module commonality and 
reuse potential. 

Utilisation of Integrated Modular 
Avionics (IMA). 

The utilisation of IMA provides 
architectural separation between 
hardware and the operating 
system, and between the 
operating system and the 
application layer.  This will assist 
with the management of hardware 
driven modifications. 

Reduced impact of software 
modifications driven by hardware 
changes.  Improved supportability 
by designing for scalability and 
accommodation of changes in 
hardware. 

 
Table G1 – Technological Opportunities 

 
 

G-3 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

APPENDIX H 
H. Technology Supportability Benefit. 
TECHNOLOGY SUPPORTABILITY BENEFIT 
 
It is possible to associate potential benefits to the technological opportunities proposed in Appendix G.  This has been carried out 
within Table H1 by assessing each technology for its ability to limit the occurrence or impact of system change drivers (see 
Figure 4).  Undesirably, this work lacks credibility as it is based on just one assessment method and does not adequately quantify 
how product supportability characteristics might have been improved, as such it can only be used to identify issues for further 
consideration. 
 

Potential to Reduce Incidence or Impact of Change Driver 

Corrective (22%) Adaptive (24%) Enhancement 
(41%) 

Perfective (10%)  
Not including ‘Other 3%’ 

Technology Opportunity 
 

(Refer to Appendix G 
for descriptions) 

Potential 
Improvement 
(Sum change 

driver 
influence). 

Emergency 
Program Fixes 

(12%) 

Routine 
Debugging 

(10%) 

Program 
Interface 
Changes 

(19%) 

Hardware 
Changes 

(5%) 

User 
Enhancements 

(41%) 

Documentation 
Improvements 

(5%) 

Code Efficiency 
Improvements 

(5%) 

Redefinition and refinement 
of the support infrastructure 
and / or processes. 

97% 
Yes. 

Redefinition and refinement of the support infrastructure and processes will not reduce the incidence of change drivers. 
However, It could significantly reduce their impact (particularly during integrity assurance). 

Application of standards for 
development and support. 92% 

Process Improvement. 92% 
Organisationally defined and 
standardised CASE tools. 92% 

Organisationally defined and 
standardised software 
management tools. 

92% 

Organisationally defined and 
standardised Software 
Engineering Environment 
(SEE). 

92% 

 
Yes. 

 
 

All of these technologies have the 
potential to improve software quality 
and hence reduce the number and 

severity of residual errors in 
software products. 

 
Yes. 

 
 

All of these technologies have the potential to improve 
the software development process and reduce the 

impact of change drivers. 

 
Yes. 

 
These 

technologies 
have the 

potential to 
improve 

documentation 
quality. 

 
No. 

 
This change 
driver is not 

affected by this 
technology, as 
code efficiency 
improvement is 
an intellectual 

process. 

Standardised approach to 
data formatting and loading. 51% 

Yes. 
Standardising the format of mission 
data will reduce the work required to 
fulfil the needs of multiple platforms, 
this will reduce the potential for error 

introduction. 

Yes. 
Standardising the format and 

loading of mission data will reduce 
the work required to fulfil the needs 
of multiple platforms, this will educe 

change driver impact. 

No. 
 

This change 
driver is not 

affected by this 
technology. 

Yes. 
Procedural 

documents will 
become 

common to 
many activities. 

No. 
 

This change 
driver is not 

affected by this 
technology. 

H-1 



 

H-2 

Potential to Reduce Incidence or Impact of Change Driver 

Corrective (22%) Adaptive (24%) Enhancement 
(41%) 

Perfective (10%)  
Not including ‘Other 3%’ 

Technology Opportunity 
 

(Refer to Appendix G 
for descriptions) 

Potential 
Improvement 
(Sum change 

driver 
influence). 

Emergency 
Program Fixes 

(12%) 

Routine 
Debugging 

(10%) 

Program 
Interface 
Changes 

(19%) 

Hardware 
Changes 

(5%) 

User 
Enhancements 

(41%) 

Documentation 
Improvements 

(5%) 

Code Efficiency 
Improvements 

(5%) 

Application of Object 
Orientation (OO). 65% 

No. 
 

The utilisation of Object Orientation 
will not reduce the number of errors 
introduced during implementation. 

Yes. 
 

Ease of implementation should be optimised through 
the principles of modularisation.  This will reduce the 

impact of these change drivers. 

No. 
User 

documentation 
will still be 
required. 

No. 
This change 
driver is not 

affected by this 
technology. 

Exploitation of automatic 
code generation. 87% 

Yes. 
 

Automatic code generation could 
reduce the potential for human 

error. 

Yes. 
 

The impact of change is reduced through the 
automatic generation of code. 

No. 
User 

documentation 
will still be 
required. 

No. 
Automation 

typically 
produces 

inefficient code. 

Utilisation of reuse and 
multiuse. 97% 

Yes. 
 

Well defined and tested software 
products should reduce the 

introduction of errors. 

Yes. 
 

Once a product is developed, tested and defined it could be usable across 
systems or even platforms, reducing the need for bespoke development. 

Yes. 
Optimised code 
can be reused 
or utilised by 

multiple 
applications. 

Utilisation of Commercial Off 
The Shelf (COTS) software. 24% 

No. 
 

COTS just like bespoke software 
will require corrective maintenance 

at some time during their life. 

Yes. 
 

Operating 
systems can 

offer a degree of 
interface 

separation. 

Yes. 
 

Operating 
systems can 

offer a degree of 
hardware 

separation. 

No. 
Once a product 

requires 
modification it 

can no longer be 
classified as 

COTS. 

No. 
 

User 
documentation 

will still be 
required. 

No. 
Once a product 

requires 
modification it 

can no longer be 
classified as 

COTS. 

Utilisation of Open 
Standards. 65% 

No. 
 

The utilisation of Open Standards 
will not reduce the number of errors 
introduced during implementation. 

 

Yes. 
 

Open Standards will significantly 
standardise program and hardware 

interfaces. 

Yes. 
Standardised 

interfaces 
should improve 
modularity and 
supportability. 

No. 
 

User 
documentation 

will still be 
required. 

No. 
 

This change 
driver is not 

affected by this 
technology. 

Utilisation of Integrated 
Modular Avionics (IMA). 24% 

No. 
 

The utilisation of IMA will not reduce 
the number of errors introduced 

during implementation 

Yes. 
 

IMA should reduce application-to-
hardware and application-to-

application interface change drivers. 

No. 
Enhancements 
are often within 
the applications 

layer. 

No. 
User 

documentation 
will still be 
required. 

No. 
This change 
driver is not 

affected by this 
technology. 

 
Table H1 – Technology Supportability Benefit



 

APPENDIX I 
I. Capability Maturity Model Common Features. 
CAPABILITY MATURITY MODEL COMMON FEATURES 
 
Common Features of the Capability Maturity Model28 are as follows: 
 

• “Commitment to Perform.  Commitment to Perform describes actions that the 
organisation must take to ensure that process is established and will endure.  
Commitment to Perform typically involves establishing organisational policies 
and leadership.” 

 
• “Ability to Perform.  Ability to Perform describes the preconditions that must 

exist in the project or organisation to implement the software process 
competently.  Ability to Perform typically involves resources, organisational 
structures and training.” 

 
• “Activities Performed.  Activities Performed describes the activities, roles and 

procedures necessary to implement a key process area.  Activities 
Performed typically involves establishing plans and procedures, performing 
the work, tracking it and taking corrective actions as necessary.” 

 
• “Measurement and Analysis.  Measurement and Analysis describes the basic 

measurement practices that are necessary to determine status related to the 
process.  These measurements are used to control and improve the process.  
Measurement and Analysis typically includes examples of the measurements 
that could be taken.” 

 
• “Verifying Implementation.  Verifying Implementation describes the steps to 

ensure that the activities are performed in compliance with the process that 
has been established.  Verifying Implementation typically encompasses 
reviews and audits by management and software quality assurance.” 

 
 
 
 
 
 
 

I-1 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

APPENDIX J 
J. Transposition of Testing Into the Supportability Domain. 
TRANSPOSITION OF TESTING INTO THE SUPPORTABILITY DOMAIN 
 
The transposition of testing into the supportability domain is documented in Table J1.  In 
the absence of any established body of evidence, this work is based on the author’s 
interpretation of academic theory. 
 

Testing Technique Transposition 
Equivalence Partitioning This technique directly relates to the production of the Support System 

Model.  Within this model support functions have been grouped into well-
defined and separate areas of concern. 

Boundary Value Analysis 
(BVA) 

BVA focuses on the fact that a large proportion of errors occur at the point at 
which program choice or action is decided.  For process, this is taken to 
relate to the way that decisions are made on how products will move through 
the support system. 

Top Down and Bottom Up 
Testing 

Testing can be carried out for individual support functions, parts of the 
support system or the support system as a whole.  Where inputs and outputs 
are unavailable they should be simulated to facilitate early testing. 

Coverage Within the support model for each function there are a number of sub 
functions.  These functions and sub functions can be tested for their 
presence and effectiveness within the proposed support system.  Examining 
evidence of intent i.e. documented policy, assigned budgets and allocated 
resources, may be carried out to gain early supportability confidence. 

Interface Testing Definition of support function operation will facilitate early interface 
development (how products will be passed from one function to another).  
The interfaces themselves can then be can be tested to ensure that they are 
complete, appropriate and correct. 

Special Case Testing Each support function performs a specific and different role but special types 
of testing can be common to all, for instance tolerance testing can be carried 
out to explore resultant outcome when: 
•  Defined rates of demand are exceeded. 
•  Demands are made beyond the scope of each function. 
•  Demands are made beyond the capability of each function. 

 
Table J1 – Testing Domain Transposition 

 
 
 
 
 
 
 
 

J-1 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Collation Page 
(for two sided printing 

 

 



 

Automatic Bibliography – Do Not Submit 
                                                 
1 “Logistics Support Analysis Guidance For Software”, M. Bailey, 2003. 
2 “Software Maintenance: Concepts and Practice”, A. Takang, P. Grubb, International Thompson Computer 
Press, 1996. 
3 “Guidelines for Successful Acquisition and Management of Software-Intensive Systems”, 
www.stsc.hill.af.mil. 
4 “Program Evolution”, M. Lehman, Academic Press, London, 1985. 
5 “Software-Reliability Engineering: Technology for the 1990s”, J. Musa and W. Everett, from IEEE Software, 
Vol 7, No 4, pp. 36-43, Nov 1999. 
6 “Support for Mission Software in RAF Systems”, AP100D-10, Issue 3, Lft 101, 1998. 
7 “Software Maintenance Management”, B. Lientz, E. Swanson, Addison-Wesley, Reading MA, 1980. 
8 “Software Maintenance Management : Changes in the Last Decade”, J. Nosek, P. Palvia, Journal of 
Software Maintenance, Vol. 2, Part 3, pp. 157-174, 1990. 
9 “Software Engineering Economics”, B. Boehm, Prentice-Hall, Englewood Cliffs NJ, 1981. 
10 “Meeting Customer Requirements”, Software Supportability Program Standard, SAE-JA-1004, 1998. 
11 “Guidance for Application - Software Support”, Def Stan 00-60, Part 3, Issue 2, 1998. 
12 “Support for Mission Software in RAF Systems”, AP100D-10, Issue 3, 1998. 
13 “Application of Integrated Logistic Support”, Def Stan 00–60, Part 0, Section 3, Para 7.1.5, 2000. 
14 “Integrated Logistic Support In The Royal Air Force”, AP 100C–70, 2nd Ed, Chap 1, Para 10, 1996. 
15 “Guidance for Application - Software Support”, Def Stan 00-60, Part 3, Issue 2, Clause 11, 1998. 
16 “Guide to the Application of LSA and LSAR”, Def Stan 00-60, Part 2, Issue 4, Para 7.5, 2000. 
17 “The Economics of Software Maintenance”, B. Boehm, in R. Arnold, editor, Proceedings, Workshop on 
Software Maintenance, Silver Spring MD, IEEE Computer Society Press, pp. 9-37, 1983. 
18 “Support for Mission Software in RAF Systems”, AP100D-10, Issue 3, Lft 110, 1998. 
19 “The Common Software Support Framework”, L Cooper, T Laverick, 
ES(AIR)(WYT)/SS/(2421/02/0/01)/AD SYS, 2004. 
20 “Astor Software and Data Support Requirements”, M Bailey, ES(Air)(WYT)/SS/(2260/01)/AD SYS, 2003. 
21 “Integrated Logistic Support In The Royal Air Force”, AP 100C–70, 2nd Ed, Glossary of Terms, 1996. 
22 “Fault Tree Handbook”, Technical Report NUREG-0492, W. Vesely, F. Goldberg, N. Roberts, and 
D. Haasl, U.S. Nuclear Commission, Washington, D.C., 1981. 
23 “Fault Analysis for Systems Engineers”, INCOSE 2003, www.incose.org. 
24 “Guidance for Application - Software Support”, Def-Stan 00-60, Part 3, Issue 2, Annex D, 1998. 
25 “Managing Software Quality And Business Risk”, M. Ould, Wiley, Chichester, 1999. 
26 “Safety Management Requirements for Defence Systems”, Def Stan 00-56, Part 2, Issue 2, 1996. 
27 “Logistics Support Analysis for Harrier GR9 / GR9A / TMK12 Software”, D. Gill, 
ES(Air)(WYT)/SS/(2237/01)/AD SYS, 2004. 
28 “The Capability Maturity Model: Guidelines for Improving the Software Process” Software Engineering 
Institute, Carnegie Mellon University, Harlow: Addison-Wesley, 1994. 
29 “The JSF System Development and Demonstration Phase Software Presentation”, 2002, www.jsf.mil. 
30 “Future Offensive Air System Use Study”, Issue 1, 2002. 
31 “Software Engineering – A Practitioners Approach”, R. Pressman, 3rd Ed, London: McGraw-Hill, 1992. 
32 “MOD ILS Information”, www.ams.dii.r.mil.uk/content/docs/ils/ils_web/lsaf.htm. 
33 “Software Supportability Program Standard”, Surface Vehicle / Aerospace Standard, The Engineering 
Society For Advancing Mobility Land Sea Air and Space, SAE-JA-1004, 1994. 
34 “Managing Systems Engineering”, The Open University, T837. 
35 “Software Metrics, a Rigorous & Practical Approach”, N. Fenton, S. Pfleeger, London: PWS Publishing 
Company, 2nd Ed, 1997. 
36 “Software Capability Evaluation, Version 3.0, Method Description”, Technical Report CMU/SEI-96-TR-002, 
P. Byrnes, M. Phillips, 1996, www.sei.cmu.edu. 
37 “Software Metrics for Product Assessment”, R. Banche, G. Bazzana, London: McGraw-Hill, 1994. 
38 “Software Maintainability Evaluation Guide”, Kirtland AFB, NM: HQ Air Force Operational Test and 
Evaluation Center (AFOTEC), 1989. 
39 “Guidelines for Successful Acquisition and Management of Software-Intensive Systems”, 
www.stsc.hill.af.mil. 
40 “The National Computing Centre, Open Source – The UK Opportunity”, Issue 2, 2002, www.ncc.co.uk. 

 


	A. Bibliography.
	B. Analysis of RAF Change Drivers.
	C. Support Activity Inventory.
	D. Qualitative Support Option Assessment.
	E. Supportability Characteristics.
	F. Technology Demonstrator Programme Summary.
	G. Supportability Related Technologies.
	H. Technology Supportability Benefit.
	I. Capability Maturity Model Common Features.
	J. Transposition of Testing Into the Supportability Domain.

